• TopCoder[SRM587 DIV 1]:TriangleXor(550)


    Problem Statement

        

    You are given an int W. There is a rectangle in the XY-plane with corners at (0, 0), (0, 1), (W, 0), and (W, 1). Let T[x] be the triangle with vertices at (0, 1), (W, 1) and (x, 0). (All points that lie inside the triangle are a part of T[x] as well.)

    The objective in this problem is to calculate the area of the region (T[0] xor T[1] xor ... xor T[W]). (See Notes for a formal definition.) The figures below show the region (T[0] xor T[1] xor ... xor T[W]) for W=1,2,3,4,5,6.

       

     

     

    Return the integer part of the area of the region.

    Definition

        
    Class: TriangleXor
    Method: theArea
    Parameters: int
    Returns: int
    Method signature: int theArea(int W)
    (be sure your method is public)

    Limits

        
    Time limit (s): 2.000
    Memory limit (MB): 64

    Notes

    - For sets of points A and B in the XY-plane, the set (A xor B) is defined as the set of all points that lie in exactly one of the sets A and B (i.e., points that belong to the union of A and B but don't belong to their intersection).
    - If the exact area is A, the correct return value is floor(A), not round(A). In words: you should return the largest integer that is less than or equal to the exact area.
    - The format of the return value was chosen to help you in case of small precision errors. The constraints guarantee that computing the correct area with absolute error less than 0.01 is sufficient to determine the correct return value. The author's solution is significantly more precise than that.

    Constraints

    - W will be between 1 and 70,000, inclusive.
    - The difference between the exact area of the region and the nearest integer will be greater than 0.01.

    Examples

    0)  
        
    1
    Returns: 0
    The exact area is 0.5.
    1)  
        
    2
    Returns: 1
    The area is approximately 1.33333.
    2)  
        
    3
    Returns: 1
    The exact area is 1.35.
    3)  
        
    4
    Returns: 2
    The area is approximately 2.62857. Note that the correct answer is 2, not 3.
    4)  
        
    5
    Returns: 2
    The area is approximately 2.13294.
    5)  
        
    12345
    Returns: 4629
     

    题意:给你一个1*n的矩形,按图中方法划线、涂色,问多大面积涂为黄色。

    题解:

    根据题目中的图,可以用两条对角线把涂色区域分为四个部分。

    对于上方部分,若n为偶数,全为黄色;若为奇数,全为黑色。

    对于左右部分,通过三角形的相似求出各个等高三角形的底之和与对角线长度的比例,计算面积。

    对于下方部分,同样通过相似求出各组等高四边形的底之和与高,计算面积。

    代码:

     1 class JumpFurther
     2 {
     3     public:
     4     int furthest(int N, int badStep)
     5     {
     6         //$CARETPOSITION$
     7         int tot=0,x=0;
     8         for(int i=1;i<=N;i++)
     9         {
    10             tot=tot+i; if(tot==badStep)x--;
    11         }
    12         return tot+x;
    13     }
    14 };
    View Code
  • 相关阅读:
    新浪推出开放云计算平台Sina App Engine
    摄像机标定
    Qt开发环境大全
    [转]卡尔曼滤波器
    Qt Creator:跨平台 IDE
    建立交叉编译的Qt/Embeded开发环境
    Linux mmap
    QtCreator在不同平台开发的程序的运行
    粒子滤波概述
    13、几点小结,unsigned long long
  • 原文地址:https://www.cnblogs.com/GhostReach/p/6700922.html
Copyright © 2020-2023  润新知