• pat 1069 The Black Hole of Numbers(20 分)


    1069 The Black Hole of Numbers(20 分)

    For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the black hole of 4-digit numbers. This number is named Kaprekar Constant.

    For example, start from 6767, we'll get:

    7766 - 6677 = 1089
    9810 - 0189 = 9621
    9621 - 1269 = 8352
    8532 - 2358 = 6174
    7641 - 1467 = 6174
    ... ...
    

    Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.

    Input Specification:

    Each input file contains one test case which gives a positive integer N in the range (0,104​​).

    Output Specification:

    If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.

    Sample Input 1:

    6767
    

    Sample Output 1:

    7766 - 6677 = 1089
    9810 - 0189 = 9621
    9621 - 1269 = 8352
    8532 - 2358 = 6174
    

    Sample Input 2:

    2222
    

    Sample Output 2:

    2222 - 2222 = 0000
     1 #include <iostream>
     2 #include <algorithm>
     3 #include <cstdio>
     4 #include <cstring>
     5 #include <string>
     6 #include <map>
     7 #include <stack>
     8 #include <vector>
     9 #include <queue>
    10 #include <set>
    11 #define LL long long
    12 #define INF 0x3f3f3f3f
    13 using namespace std;
    14 const int MAX = 1e5 + 10;
    15 
    16 int n, A[10], ans_min, ans_max, cnt;
    17 
    18 int my_pow(int x, int n)
    19 {
    20     int ans = 1;
    21     while (n)
    22     {
    23         if (n & 1) ans *= x;
    24         x *= x;
    25         n >>= 1;
    26     }
    27     return ans;
    28 }
    29 
    30 int main()
    31 {
    32 //    freopen("Date1.txt", "r", stdin);
    33     scanf("%d", &n);
    34     if (n == 6174)
    35     {
    36         printf("7641 - 1467 = 6174
    ");
    37         return 0;
    38     }
    39     while (1)
    40     {
    41         if (n == 6174) return 0;
    42         ans_max = ans_min = cnt = 0;
    43         while (n)
    44         {
    45             A[cnt ++] = n % 10;
    46             n /= 10;
    47         }
    48         sort(A, A + 4, less<int>());
    49         for (int i = 0; i < 4; ++ i)
    50             ans_max += A[i] * my_pow(10, i);
    51         sort(A, A + 4, greater<int>());
    52         for (int i = 0; i < 4; ++ i)
    53             ans_min += A[i] * my_pow(10, i);
    54 
    55         if (ans_min == ans_max)
    56         {
    57             printf("%04d - %04d = 0000
    ", ans_max, ans_min);
    58             return 0;
    59         }
    60         n = ans_max - ans_min;
    61         printf("%04d - %04d = %04d
    ", ans_max, ans_min, n);
    62     }
    63     return 0;
    64 }
  • 相关阅读:
    mysql 时间戳
    UTF8有BOM和无BOM
    php正则表达式
    二叉树的一些操作
    简单的Oracle触发器使用
    简单的Java调用Oracle存储过程
    Oracle知识关键字
    List和Set
    MyEclipse 快捷键
    Java零基础系列006——小测试(循环)
  • 原文地址:https://www.cnblogs.com/GetcharZp/p/9592322.html
Copyright © 2020-2023  润新知