• pat 1136 A Delayed Palindrome(20 分)


    1136 A Delayed Palindrome(20 分)

    Consider a positive integer N written in standard notation with k+1 digits ai​​ as ak​​a1​​a0​​ with 0ai​​<10 for all i and ak​​>0. Then N is palindromic if and only if ai​​=aki​​ for all i. Zero is written 0 and is also palindromic by definition.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )

    Given any positive integer, you are supposed to find its paired palindromic number.

    Input Specification:

    Each input file contains one test case which gives a positive integer no more than 1000 digits.

    Output Specification:

    For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

    A + B = C
    

    where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.

    Sample Input 1:

    97152
    

    Sample Output 1:

    97152 + 25179 = 122331
    122331 + 133221 = 255552
    255552 is a palindromic number.
    

    Sample Input 2:

    196
    

    Sample Output 2:

    196 + 691 = 887
    887 + 788 = 1675
    1675 + 5761 = 7436
    7436 + 6347 = 13783
    13783 + 38731 = 52514
    52514 + 41525 = 94039
    94039 + 93049 = 187088
    187088 + 880781 = 1067869
    1067869 + 9687601 = 10755470
    10755470 + 07455701 = 18211171
    Not found in 10 iterations.
    
     
     1 #include <map>
     2 #include <set>
     3 #include <queue>
     4 #include <cmath>
     5 #include <stack>
     6 #include <vector>
     7 #include <string>
     8 #include <cstdio>
     9 #include <cstring>
    10 #include <climits>
    11 #include <iostream>
    12 #include <algorithm>
    13 #define wzf ((1 + sqrt(5.0)) / 2.0)
    14 #define INF 0x3f3f3f3f
    15 #define LL long long
    16 using namespace std;
    17 
    18 const int MAXN = 2e3 + 10;
    19 
    20 char A[MAXN], B[MAXN], C[MAXN];
    21 
    22 void calcB()
    23 {
    24     int len = strlen(A), a = len - 1, b = 0;
    25         for (a ,b ; b < len; ++ b, -- a)
    26             B[b] = A[a];
    27 }
    28 
    29 void calcC()
    30 {
    31     int len1 = strlen(A), len = len1, b = 0;
    32     int temp[MAXN];
    33     for (int i = 0, j = len1 - 1; i < len; ++ i, -- j)
    34     {
    35         if (j != -1) b += int(A[j] - '0') + int(B[j] - '0');
    36         temp[i] = b % 10;
    37         b /= 10;
    38         if (i == len - 1 && b > 0) ++ len;
    39     }
    40 
    41     for (int i = 0, j = len - 1; i < len; ++ i, -- j)
    42         C[i] = char ('0' + temp[j]);
    43 }
    44 
    45 int main()
    46 {
    47     scanf("%s", &A);
    48     int len = strlen(A), a = len - 1, b = 0;
    49         for (a ,b ; b < len; ++ b, -- a)
    50             B[b] = A[a];
    51     for (int i = 0; ; ++ i)
    52     {
    53         if (i == 10)
    54         {
    55             printf("Not found in 10 iterations.
    ");
    56             break;
    57         }
    58         calcB();
    59         if (strcmp(A, B) == 0)
    60         {
    61             printf("%s is a palindromic number.
    ", A);
    62             break;
    63         }
    64         calcC();
    65         printf("%s + %s = %s
    ", A, B, C);
    66         strcpy(A, C);
    67     }
    68     return 0;
    69 }
  • 相关阅读:
    bootstrap modal 垂直居中对齐
    BootStrap同时显示多个Modal解决方案
    Echarts使用及动态加载图表数据 折线图X轴数据动态加载
    jQuery操纵DOM元素属性 attr()和removeAtrr()方法使用详解
    jQuery修改class属性和CSS样式
    JS中的substring和substr函数的区别
    select into from和insert into select from两种表复制语句区别
    SQL查询遍历数据方法一 [ 临时表 + While循环]
    JSSDK实现微信自定义分享---java 后端获取签名信息
    Spring 自带的定时任务Scheduled
  • 原文地址:https://www.cnblogs.com/GetcharZp/p/9580080.html
Copyright © 2020-2023  润新知