• hdu 5901 Count primes (meisell-Lehmer)


    Count primes

    Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 2625    Accepted Submission(s): 1337


    Problem Description
    Easy question! Calculate how many primes between [1...n]!
     
    Input
    Each line contain one integer n(1 <= n <= 1e11).Process to end of file.
     
    Output
    For each case, output the number of primes in interval [1...n]
     

    Sample Input
    2
    3
    10
     
    Sample Output
    1
    2
    4

    help

    C/C++:

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <algorithm>
      5 #include <cmath>
      6 using namespace std;
      7 typedef long long ll;
      8 const int N=5e6+2;
      9 bool np[N];
     10 int prime[N],pi[N];
     11 int getprime()
     12 {
     13     int cnt=0;
     14     np[0]=np[1]=true;
     15     pi[0]=pi[1]=0;
     16     for(int i=2; i<N; ++i)
     17     {
     18         if(!np[i])
     19             prime[++cnt]=i;
     20         pi[i]=cnt;
     21         for(int j=1; j<=cnt&&i*prime[j]<N; ++j)
     22         {
     23             np[i*prime[j]]=true;
     24             if(i%prime[j]==0) break;
     25         }
     26     }
     27     return cnt;
     28 }
     29 const int M=7;
     30 const int PM=2*3*5*7*11*13*17;
     31 int phi[PM+1][M+1],sz[M+1];
     32 void init()
     33 {
     34     getprime();
     35     sz[0]=1;
     36     for(int i=0; i<=PM; ++i)
     37         phi[i][0]=i;
     38     for(int i=1; i<=M; ++i)
     39     {
     40         sz[i]=prime[i]*sz[i-1];
     41         for(int j=1; j<=PM; ++j)
     42             phi[j][i]=phi[j][i-1]-phi[j/prime[i]][i-1];
     43     }
     44 }
     45 int sqrt2(ll x)
     46 {
     47     ll r=(ll)sqrt(x-0.1);
     48     while(r*r<=x) ++r;
     49     return int(r-1);
     50 }
     51 int sqrt3(ll x)
     52 {
     53     ll r=(ll)cbrt(x-0.1);
     54     while(r*r*r<=x) ++r;
     55     return int(r-1);
     56 }
     57 ll getphi(ll x,int s)
     58 {
     59     if(s==0)
     60         return x;
     61     if(s<=M)
     62         return phi[x%sz[s]][s]+(x/sz[s])*phi[sz[s]][s];
     63     if(x<=prime[s]*prime[s])
     64         return pi[x]-s+1;
     65     if(x<=prime[s]*prime[s]*prime[s]&&x<N)
     66     {
     67         int s2x=pi[sqrt2(x)];
     68         ll ans=pi[x]-(s2x+s-2)*(s2x-s+1)/2;
     69         for(int i=s+1; i<=s2x; ++i)
     70             ans+=pi[x/prime[i]];
     71         return ans;
     72     }
     73     return getphi(x,s-1)-getphi(x/prime[s],s-1);
     74 }
     75 ll getpi(ll x)
     76 {
     77     if(x<N) return pi[x];
     78     ll ans=getphi(x,pi[sqrt3(x)])+pi[sqrt3(x)]-1;
     79     for(int i=pi[sqrt3(x)]+1,ed=pi[sqrt2(x)]; i<=ed; ++i)
     80         ans-=getpi(x/prime[i])-i+1;
     81     return ans;
     82 }
     83 ll lehmer_pi(ll x)
     84 {
     85     if(x<N) return pi[x];
     86     int a=(int)lehmer_pi(sqrt2(sqrt2(x)));
     87     int b=(int)lehmer_pi(sqrt2(x));
     88     int c=(int)lehmer_pi(sqrt3(x));
     89     ll sum=getphi(x,a)+ll(b+a-2)*(b-a+1)/2;
     90     for(int i=a+1; i<=b; i++)
     91     {
     92         ll w=x/prime[i];
     93         sum-=lehmer_pi(w);
     94         if(i>c)
     95             continue;
     96         ll lim=lehmer_pi(sqrt2(w));
     97         for(int j=i; j<=lim; j++)
     98             sum-=lehmer_pi(w/prime[j])-(j-1);
     99     }
    100     return sum;
    101 }
    102 int main()
    103 {
    104     init();
    105     ll n;
    106     while(cin>>n)
    107         cout<<lehmer_pi(n)<<endl;
    108     return 0;
    109 }
  • 相关阅读:
    大数据、数据挖掘在交通领域的应用
    浅谈 kubernetes service 那些事(上篇)
    Docker中搭建zookeeper集群
    【kudu pk parquet】runtime filter实践
    【大数据之数据仓库】选型流水记
    【大数据之数据仓库】安装部署GreenPlum集群
    【大数据之数据仓库】GreenPlum优化器对比测试
    【大数据之数据仓库】GreenPlum PK DeepGreen(TPCH)
    【大数据之数据仓库】HAWQ versus GreenPlum
    用 PS 调整服务器时间
  • 原文地址:https://www.cnblogs.com/GetcharZp/p/9558610.html
Copyright © 2020-2023  润新知