• poj 2104 K-th Number (划分树)


    K-th Number
    Time Limit: 20000MS   Memory Limit: 65536K
    Total Submissions: 68467   Accepted: 24208
    Case Time Limit: 2000MS

    Description

    You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment.
    That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?"
    For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

    Input

    The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000).
    The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given.
    The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

    Output

    For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

    Sample Input

    7 3
    1 5 2 6 3 7 4
    2 5 3
    4 4 1
    1 7 3

    Sample Output

    5
    6
    3

    Hint

    This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

    PS:求指定区域内第K大的数

    C/C++:

     1 #include <map>
     2 #include <queue>
     3 #include <cmath>
     4 #include <vector>
     5 #include <string>
     6 #include <cstdio>
     7 #include <cstring>
     8 #include <climits>
     9 #include <iostream>
    10 #include <algorithm>
    11 #define INF 0x3f3f3f3f
    12 using namespace std;
    13 const int MAXN = 1e5 + 10;
    14 int a, b, k, N, M, Sorted[MAXN], Tree[30][MAXN], Toleft[30][MAXN];
    15 
    16 void Build(int Lef, int Rig, int dep)
    17 {
    18     if (Lef == Rig) return;
    19     int Mid = (Lef + Rig) >> 1;
    20     int Same = Mid - Lef + 1;
    21     for (int i = Lef; i <= Rig; ++ i)
    22         if (Tree[dep][i] < Sorted[Mid]) -- Same;
    23     int Lpos = Lef, Rpos = Mid + 1;
    24     for (int i = Lef; i <= Rig; ++ i)
    25     {
    26         if (Tree[dep][i] < Sorted[Mid])
    27             Tree[dep + 1][Lpos ++] = Tree[dep][i];
    28         else if (Tree[dep][i] == Sorted[Mid])
    29         {
    30             Tree[dep + 1][Lpos ++] = Tree[dep][i];
    31             -- Same;
    32         }
    33         else
    34             Tree[dep + 1][Rpos ++] = Tree[dep][i];
    35         Toleft[dep][i] = Toleft[dep][Lef - 1] + Lpos - Lef;
    36     }
    37     Build(Lef, Mid, dep + 1);
    38     Build(Mid + 1, Rig, dep + 1);
    39 }
    40 
    41 int Query(int Lef, int Rig, int l, int r, int dep, int k)
    42 {
    43     if (l == r) return Tree[dep][l];
    44     int Mid = (Lef + Rig) >> 1;
    45     int Cnt = Toleft[dep][r] - Toleft[dep][l - 1];
    46     if (Cnt >= k)
    47     {
    48         int newL = Lef + Toleft[dep][l - 1] - Toleft[dep][Lef - 1];
    49         int newR = newL + Cnt - 1;
    50         return Query(Lef, Mid, newL, newR, dep + 1, k);
    51     }
    52     else
    53     {
    54         int newR = r + Toleft[dep][Rig] - Toleft[dep][r];
    55         int newL = newR - (r - l - Cnt);
    56         return Query(Mid + 1, Rig, newL, newR, dep + 1, k - Cnt);
    57     }
    58 }
    59 
    60 int main()
    61 {
    62     while (~scanf("%d%d", &N, &M))
    63     {
    64         for (int i = 1; i <= N; ++ i)
    65         {
    66             scanf("%d", &Tree[0][i]);
    67             Sorted[i] = Tree[0][i];
    68         }
    69         sort(Sorted + 1, Sorted + 1 + N);
    70         Build(1, N, 0);
    71         for (int i = 1; i <= M; ++ i)
    72         {
    73             scanf("%d%d%d", &a, &b, &k);
    74             printf("%d
    ", Query(1, N, a, b, 0, k));
    75         }
    76     }
    77 }
  • 相关阅读:
    MyBatis学习总结(三)——优化MyBatis配置文件中的配置
    MyBatis学习总结(一)——MyBatis快速入门
    java基础学习总结——java环境变量配置
    java基础学习总结——开篇
    java基础学习总结——基础语法1
    java基础学习总结——基础语法2
    java基础学习总结——面向对象1
    java基础学习总结——异常处理
    Linux网络配置(setup)
    Linux搭建Apache+Tomcat实现负载均衡
  • 原文地址:https://www.cnblogs.com/GetcharZp/p/9551507.html
Copyright © 2020-2023  润新知