• KDtree


    KDtree

    What is KDtree?

    KDtree(K dimensional tree) 是一个支持多维空间的数据结构,主要是将空间内的点进行区域划分,快速维护有关空间点的操作,如空间的最远(近)点对,区间搜索。KDtree的结构与线段树类似,只是线段树是对一维空间的操作,而KDtree是多维操作的,这也导致了KDtree的灵活性没有线段树高。

    树上每个点维护的信息:

    1. 两个儿子
    2. 该点表示的空间范围(超长方体,2D为矩形,3D为长方体)
    3. 中位点(坐标等信息)

    Operations(Base on 2D)

    Build

    因为是空间划分,所以要交错地用平行与(x, y)轴的直线进行划分。

    (n)个点(p_i)
    假设现在要用平行于(y)轴的直线划分区间([L, R])((p_i)),首先初始化该点的空间范围,然后求出([L, R])(x)坐标从小到大排序时的中位点,这个可以用nth_element来算,记录中位点((mid)),这就将([L, R])分成了([L, mid-1], [mid+1, R])两部分,然后递归两个区间,而这两个区间要用平行于(x)轴的直线进行划分,以此类推。

    void build(sKDtree *&cur, int L, int R, int type)
    //type==0时平行于$y$轴,type==1时平行于$x$轴
    {
    	if (L>R) return;
    	cur=mem++; //新建一个点
    
    //求空间范围
    	int le, ri, down, up;
    	le=down=inf, ri=up=0;
    	for (int i=L; i<=R; ++i)
    	{
    		le=min(le, p[i].x);
    		ri=max(ri, p[i].x);
    		down=min(down, p[i].y);
    		up=max(up, p[i].y);
    	}
    	
    //求中位点
    	int mid=(L+R)>>1;
    	if (type) nth_element(p+L, p+mid, p+R+1, cmpy);
    	else nth_element(p+L, p+mid, p+R+1, cmpx);
    //点初始化
    	cur->init(type, le, ri, down, up);
    	cur->p=p[mid];
    
    	build(cur->son[0], L, mid-1, type^1);
    	build(cur->son[1], mid+1, R, type^1);
    }
    

    ask(以查找欧拉距离最远点为例)

    假设要找离(p_0)欧拉距离最远的点。优先递归答案较优的区间,然后在递归另一个区间,这样剪枝的时候就能减掉更多的区间。例如:假设(A)是当前的最远点,则灰色区间是不用递归的。我们选择区间的四个角作为区间的代表。

    inline int calc_maxdis(sKDtree *cur, Point &p0)
    //选择四个角中离p0最远的那个点作为区间的代表
    {
        if (!cur) return 0;
        int ans=sqr(cur->x1-p0.x)+sqr(cur->y1-p0.y);
        ans=max(ans, sqr(cur->x1-p0.x)+sqr(cur->y2-p0.y));
        ans=max(ans, sqr(cur->x2-p0.x)+sqr(cur->y1-p0.y));
        ans=max(ans, sqr(cur->x2-p0.x)+sqr(cur->y2-p0.y));
        return ans;
    }
    void ask(sKDtree *&cur, Point &p0, int &dis)
    {
        if (!cur) return;
        if (calc_maxdis(cur, p0)<=dis) return; //dis是当前最远距离
    
        dis=max(dis, sqr(cur->p.x-p0.x)+sqr(cur->p.y-p0.y));
        
        //判断哪个区间更优
        int nid=1;
        int d[2];
        d[0]=calc_maxdis(cur->son[0], p0);
        d[1]=calc_maxdis(cur->son[1], p0);
        if (d[0]>d[1]) nid^=1;
    
        //大于当前最优答案的区间进行搜索
        if (d[nid]>dis) ask(cur->son[nid], p0, dis);
        if (d[nid^1]>dis) ask(cur->son[nid^1], p0, dis);
    }
    

    k近邻

    (k)近邻是指找到第(k)近的点,查找的时候与找最近邻类似,只不过要维护一个大根堆,维护当前(k)个点中的最远距离,如果当前点比最远距离要小,则更新大根堆,而且利用最远距离可以减掉那些不在当前第(k)距离内的区间。

    注意:由于建树方式的特殊性,使得KDtree难以支持插入操作。

    附上模板:Base Stations

    #include <bits/stdc++.h>
    using namespace std;
    
    const int inf=int(1e9);
    const int maxn=int(1e5)+100;
    const int maxm=105;
    
    struct base
    {
        int x, y, type;
    
        bool operator < (const base b) const
        {
            return type<b.type;
        }
    };
    
    struct sKDtree
    {
        sKDtree *son[2];
        base p;
        int sum[maxm];
        int total;
        int x1, x2, y1, y2;
        int type;
    
        inline void init(int _type=0, int _x1=0, int _x2=0, int _y1=0, int _y2=0)
        {
            total=0;
            for (int i=0; i<maxm; ++i) sum[i]=0;
            son[0]=son[1]=NULL;
            x1=_x1; y1=_y1; x2=_x2; y2=_y2;
            type=_type;
        }
    
        void updata()
        {
            if (son[0])
            {
                for (int i=0; i<maxm; ++i)
                    sum[i]+=son[0]->sum[i];
                total+=son[0]->total;
            }
            if (son[1])
            {
                for (int i=0; i<maxm; ++i)
                    sum[i]+=son[1]->sum[i];
                total+=son[1]->total;
            }
        }
    };
    
    int n;
    base station[maxn];
    sKDtree memory[maxn*2];
    sKDtree *mem=memory;
    sKDtree *KDtree;
    
    inline int sqr(int x)
    {
        return x*x;
    }
    void read()
    {
        for (int i=1; i<=n; ++i)
        {
            base &cur=station[i];
            scanf("%d%d%d", &cur.x, &cur.y, &cur.type);
        }
    }
    inline bool cmp0(base &b, base &c)
    {
        return b.x<c.x;
    }
    inline bool cmp1(base &b, base &c)
    {
        return b.y<c.y;
    }
    void build(sKDtree *&cur, int L, int R, int type)
    {
        if (L>R) return;
        cur=mem++;
    
        int le, ri, down, up;
        le=down=inf, ri=up=0;
        for (int i=L; i<=R; ++i)
        {
            base &cur=station[i];
            le=min(le, cur.x);
            ri=max(ri, cur.x);
            down=min(down, cur.y);
            up=max(up, cur.y);
        }
        int mid=(L+R)>>1;
        if (type) nth_element(station+L, station+mid, station+R+1, cmp1);
        else nth_element(station+L, station+mid, station+R+1, cmp0);
    
        cur->init(type, le, ri, down, up);
        cur->p=station[mid];
        cur->sum[station[mid].type]++;
        cur->total=1;
        build(cur->son[0], L, mid-1, type^1);
        build(cur->son[1], mid+1, R, type^1);
        cur->updata();
        if (cur->son[0])
        {
            for (int i=0; i<maxm; ++i)
                cur->sum[i]+=cur->son[0]->sum[i];
            cur->total+=cur->son[0]->total;
        }
        if (cur->son[1])
        {
            for (int i=0; i<maxm; ++i)
                cur->sum[i]+=cur->son[1]->sum[i];
            cur->total+=cur->son[1]->total;
        }
    }
    inline int calc_maxdis(sKDtree *cur, base &psta)
    {
        if (!cur) return 0;
        int ans=sqr(cur->x1-psta.x)+sqr(cur->y1-psta.y);
        ans=max(ans, sqr(cur->x1-psta.x)+sqr(cur->y2-psta.y));
        ans=max(ans, sqr(cur->x2-psta.x)+sqr(cur->y1-psta.y));
        ans=max(ans, sqr(cur->x2-psta.x)+sqr(cur->y2-psta.y));
        return ans;
    }
    void ask(sKDtree *&cur, base &psta, int &dis)
    {
        if (!cur) return;
        if (cur->total==cur->sum[psta.type]) return;
        if (calc_maxdis(cur, psta)<=dis) return;
    
        if (cur->p.type!=psta.type)
            dis=max(dis, sqr(cur->p.x-psta.x)+sqr(cur->p.y-psta.y));
        
        int nid=1;
        int d[2];
        d[0]=calc_maxdis(cur->son[0], psta);
        d[1]=calc_maxdis(cur->son[1], psta);
        if (d[0]>d[1]) nid^=1;
    
        if (d[nid]>dis) ask(cur->son[nid], psta, dis);
        if (d[nid^1]>dis) ask(cur->son[nid^1], psta, dis);
    }
    void solve()
    {
        for (int i=0; i<=n; ++i) (memory+i)->init();
        mem=memory;
        KDtree=NULL;
    
        int ans=0;
        build(KDtree, 1, n, 0);
    
        for (int i=1; i<=n; ++i)
            ask(KDtree, station[i], ans);
        
        printf("%d
    ", ans);
    }
    int main()
    {
        while(scanf("%d", &n)==1 && n)
        {
            read();
            solve();
        }
        return 0;
    }
    
    
  • 相关阅读:
    学习Mybatis与mysql数据库的示例笔记
    SpringAOP学习笔记
    idea开发ssh(Spring+struts+Hibernate)实现对MySQL数据库的增删改查
    springmvc加vue实现前后端数据的跨域访问
    idea开发工具springmvc加vue.js实现MySQL数据库的查询操作
    利用idea开发工具实现ssh(spring+struts+hibernate)加vue.js前后台对数据库的查询
    appweb 7.0.2版本编译
    Unable to register the DLL/OCX: RegSvr32 failed with exit code 0x3 我的解决方法
    无法定位程序输入点 InitializeCriticalSectionEx 于动态链接库 Kernel32.dll 上 问题解决方法
    海思3516D + IMX291图像闪烁问题定位
  • 原文地址:https://www.cnblogs.com/GerynOhenz/p/8727415.html
Copyright © 2020-2023  润新知