题意
思路
一开始想用双向广搜来做,找他们相碰的点,但是发现对其的理解还是不够完全,导致没写成功。不过,后来想清楚了,之前的错误可能在于从边界点进行BFS,其访问顺序应该是找到下一个比当前那个要大的点,但是我写反了。。可以先对左边的队列进行BFS,保存其visited,再接着对右边的队列进行BFS,当访问到之前已经访问过的结点时,则加入到结果中。
实现
//
//
#include "../PreLoad.h"
/*
Given the following 5x5 matrix:
Pacific ~ ~ ~ ~ ~
~ 1 2 2 3 (5) *
~ 3 2 3 (4) (4) *
~ 2 4 (5) 3 1 *
~ (6) (7) 1 4 5 *
~ (5) 1 1 2 4 *
* * * * * Atlantic
Return:
[[0, 4], [1, 3], [1, 4], [2, 2], [3, 0], [3, 1], [4, 0]] (positions with parentheses in above matrix).
*/
class Solution {
public:
/**
* 从边界的点开始进行BFS,找出交叉的点,即为可以到达两边的点
* @param matrix
* @return
*/
vector<pair<int, int>> pacificAtlantic(vector<vector<int>>& matrix) {
vector<pair<int, int>> result;
if (matrix.size() == 0) {
return result;
}
// 双向BFS,找重合点
queue<pair<int, int>> pa_queue; //太平洋
queue<pair<int, int>> at_queue; //大西洋
size_t row = matrix.size();
size_t col = matrix[0].size();
vector<vector<int>> layouts = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
auto state_bfs = [&](queue<pair<int, int>>& queue, vector<vector<int>>& visit) {
while (!queue.empty()) {
pair<int, int> content = queue.front();
queue.pop();
int height = content.first;
int x = content.second / col;
int y = content.second % col;
for (auto temp : layouts) {
int newx = temp[0] + x;
int newy = temp[1] + y;
// 因为是从边界结点开始,题目又要求某个点从高往低到两个海洋,所以边界点访问顺序则为递增
if (newx < 0 || newx >= row || newy < 0 || newy >= col || visit[newx][newy] || matrix[newx][newy] < height) {
continue;
}
queue.push({matrix[newx][newy], newx * col + newy});
visit[newx][newy] = 1;
}
}
};
vector<vector<int>> visited1(row, vector<int>(col, 0));
vector<vector<int>> visited2(row, vector<int>(col, 0));
// 第一行和第一列
for (int i = 0; i < col; i++) {
pa_queue.push({matrix[0][i], i});
visited1[0][i] = 1;
at_queue.push({matrix[row-1][i], (row-1) * col + i});
visited2[row-1][i] = 1;
}
for (int i = 0; i < row; i++) {
pa_queue.push({matrix[i][0], i * col});
visited1[i][0] = 1;
at_queue.push({matrix[i][col-1], i * col + col-1});
visited2[i][col-1] = 1;
}
state_bfs(pa_queue, visited1);
state_bfs(at_queue, visited2);
// 交叉点则为可以到达两边的点
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (visited1[i][j] && visited2[i][j]) {
result.push_back({i, j});
}
}
}
return result;
}
vector<pair<int, int>> pacificAtlantic2(vector<vector<int>>& matrix) {
vector<pair<int, int>> result;
if (matrix.size() == 0) {
return result;
}
// 双向BFS,找重合点
queue<pair<int, int>> pa_queue; //太平洋
queue<pair<int, int>> at_queue; //大西洋
size_t row = matrix.size();
size_t col = matrix[0].size();
vector<vector<int>> layouts = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
auto state_bfs = [&](queue<pair<int, int>>& queue, vector<vector<int>>& visit, bool flag) {
while (!queue.empty()) {
pair<int, int> content = queue.front();
queue.pop();
int height = content.first;
int x = content.second / col;
int y = content.second % col;
for (auto temp : layouts) {
int newx = temp[0] + x;
int newy = temp[1] + y;
// 因为是从边界结点开始,题目又要求某个点从高往低到两个海洋,所以边界点访问顺序则为递增
if (newx < 0 || newx >= row || newy < 0 || newy >= col || matrix[newx][newy] < height) {
continue;
}
if (flag) {
if (visit[newx][newy] != 1) {
// 已经被另外一个访问过
if (visit[newx][newy] == 2) {
result.push_back({newx, newy});
continue;
}
queue.push({matrix[newx][newy], newx * col + newy});
visit[newx][newy] = 1;
}
}
else {
if (visit[newx][newy] != 2) {
// 已经被另外一个访问过
if (visit[newx][newy] == 1) {
result.push_back({newx, newy});
continue;
}
queue.push({matrix[newx][newy], newx * col + newy});
visit[newx][newy] = 2;
}
}
}
}
};
vector<vector<int>> visited1(row, vector<int>(col, 0));
vector<vector<int>> visited2(row, vector<int>(col, 0));
// 第一行和第一列
for (int i = 0; i < col; i++) {
pa_queue.push({matrix[0][i], i});
visited1[0][i] = 1;
at_queue.push({matrix[row-1][i], (row-1) * col + i});
visited2[row-1][i] = 2;
}
for (int i = 0; i < row; i++) {
pa_queue.push({matrix[i][0], i * col});
visited1[i][0] = 1;
at_queue.push({matrix[i][col-1], i * col + col-1});
visited2[i][col-1] = 2;
}
while (!pa_queue.empty() || !at_queue.empty()) {
if (!pa_queue.empty()) {
state_bfs(pa_queue, visited1, true);
}
if (!at_queue.empty()) {
state_bfs(at_queue, visited2, false);
}
}
// 交叉点则为可以到达两边的点
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (visited1[i][j] && visited2[i][j]) {
result.push_back({i, j});
}
}
}
return result;
}
void test() {
vector<vector<int>> matrix = {
{1, 2, 2, 3, 5},
{3, 2, 3, 4, 4},
{2, 4, 5, 3, 1},
{6, 7, 1, 4, 5},
{5, 1, 1, 2, 4}
};
vector<pair<int, int>> result = this->pacificAtlantic2(matrix);
for (int i = 0; i < result.size(); i++) {
pair<int, int> content = result[i];
cout << "(" << content.first << ", " << content.second << ")" << endl;
}
}
};