• 分式的带入求值


    因为感觉写的东西有极大的可能是错的,所以公开,希望路人指正。

    感谢 @黄队 @Elegia 的群中指导!


    普通的分式带入求值

    分式形如 (F(x) = frac{G(x)}{H(x)}),这里 (G(x))(H(x)) 也可以是分式。

    比如当 (G(x) = x)(H(x) = x ^ 2 + 1) 时,(F(x) = frac{x}{x ^ 2 + 1})

    (x = 5) 带入,可以得到 (F(5) = frac{5}{26})

    易证,对于所有的 (xin R),将 (x) 带入都可以得到合法的值。


    带入后分子 (= 0) 分母 ( e 0)

    这其实并不是一个很特殊的 case,就是为了让自己区分一下。

    比如上面的 (x = 0) 时,分式值 (F(0) = 0)


    带入后分子 ( e 0) 分母 (= 0)

    大部分情况下这样就当它 ( o infty) 就好了。

    比如 (frac{x + 1}{x})(x = 0) 时确实就是挂了(不要无中生有乘个 (x) 上去啊)。

    可是这里有一种特殊情况:当分子分母都是类似的类型时。

    其实可能还有好多特殊情况,但是萌新只遇到过这种。

    比如 (G(x) = frac{x ^ 2}{x - 1})(H(x) = frac{x + 1}{x - 1})(F(x) = dfrac{frac{x ^ 2}{x - 1}}{frac{x + 1}{x - 1}})

    (x = 1) 时,那么可以上下同乘 (x - 1),就可以算了。

    注:这里需要在带入之前乘,要不然乘 (x - 1) 就变成了乘 (0)
    其实就是需要在带入之前合法操作多项式,使得带入之后合法。

    应该大部分时候,多乘几个 (x - 1) 上去玩玩都是没问题的,

    可是很可能,乘多了会出现 (0 / 0)(infty/infty) 的现象,具体见下文。


    带入后分子 (= 0) 且分母 (= 0)

    要用到洛必达法则!简单得说,洛必达法则就是

    当带入 (x = x_0) 后分式变成 (0/0)(infty/infty) 型的时,(F(x_0) = frac{G'(x_0)}{H'(x_0)})

    如果分子分母求导后还是 (0/0)(infty/infty),就再导一次,一直导到不是这样为止。

    然后或许就会转到上面的某种情况之一什么的?

    至于证明,知乎 上有好多长篇大论,萌新无才,就把证明咕了。

    比如 (F(x) = frac{(x - 1)(x + 1)}{x - 1}) 时带入 (x = 1)

    根据直觉或约分,可以发现 (lim_{x o 1}F(x) = 2)

    根据洛必达法则,(F(1) = frac{2}{1} = 2)。这样勉强验证了它是对的。


    其他

    感觉分式带入求值什么的有些过于玄学,或许也是萌新探究不深。

    有些时候分式带入求值或许有很多种方法,或许都是对的(?)。

    比如在求导之前之后处理分式什么的,萌新也不太懂……

    就先写到这里了。

  • 相关阅读:
    云计算下一浪潮,腾讯云抢占 Serverless 制高点
    Serverless + GitHub Actions 完美自动化部署静态网站
    Serverless 技术在格灵深瞳的落地实践
    万物皆可 Serverless 之我的 Serverless 之路
    LeetCode 哈希表 136:只出现一次的数字(计数哈希表,异或)
    Spring 01 IOC
    LeetCode 数组:1.两数之和 11. 盛最多水的容器
    LeetCode 链表:21合并两个有序链表 19删除链表的倒数第N个节点
    Maybatis的一些总结(三:增删改查)
    Maybatis的一些总结(一:了解)
  • 原文地址:https://www.cnblogs.com/George1123/p/14510174.html
Copyright © 2020-2023  润新知