• Repeating Decimals, ACM/ICPC World Finals 1990, UVa202


                                                                                        Repeating Decimals

    Description

    The decimal expansion of the fraction 1/33 is tex2html_wrap_inline43 , where the tex2html_wrap_inline45 is used to indicate that the cycle 03 repeats indefinitely with no intervening digits. In fact, the decimal expansion of every rational number (fraction) has a repeating cycle as opposed to decimal expansions of irrational numbers, which have no such repeating cycles.

    Examples of decimal expansions of rational numbers and their repeating cycles are shown below. Here, we use parentheses to enclose the repeating cycle rather than place a bar over the cycle.

    tabular23

    Write a program that reads numerators and denominators of fractions and determines their repeating cycles.

    For the purposes of this problem, define a repeating cycle of a fraction to be the first minimal length string of digits to the right of the decimal that repeats indefinitely with no intervening digits. Thus for example, the repeating cycle of the fraction 1/250 is 0, which begins at position 4 (as opposed to 0 which begins at positions 1 or 2 and as opposed to 00 which begins at positions 1 or 4).

    Input

    Each line of the input file consists of an integer numerator, which is nonnegative, followed by an integer denominator, which is positive. None of the input integers exceeds 3000. End-of-file indicates the end of input.


    Output

    For each line of input, print the fraction, its decimal expansion through the first occurrence of the cycle to the right of the decimal or 50 decimal places (whichever comes first), and the length of the entire repeating cycle.

    In writing the decimal expansion, enclose the repeating cycle in parentheses when possible. If the entire repeating cycle does not occur within the first 50 places, place a left parenthesis where the cycle begins - it will begin within the first 50 places - and place ``...)" after the 50th digit.

    Print a blank line after every test case.

    Sample Input

    76 25
    5 43
    1 397

    Sample Output

    76/25 = 3.04(0)
       1 = number of digits in repeating cycle
    
    5/43 = 0.(116279069767441860465)
       21 = number of digits in repeating cycle
    
    1/397 = 0.(00251889168765743073047858942065491183879093198992...)
       99 = number of digits in repeating cycle
    

    输出a/b的循环小数表示以及循环节长度。
    用变量c存储小数点之前的结果,用afterpoint【3000】、mod【3000】分别存储小数点之后的数、a%b(余数);
    模拟除法,每除一次,查找余数是否在前面出现过,如果出现过,则mod【j】~mod【i】为循环节。
    #include<stdio.h>
    int main()
    {
        int a, b;
        while(scanf("%d%d", &a, &b)!=EOF)
        {
            int c = a/b, afterpoint[3000], mod[3000], i, j, k, flag=0;
            printf("%d/%d = ", a, b);
            for(i=0; i<b; i++)
            {
                a = a%b;
                mod[i] = a;
                a *= 10;
                afterpoint[i] = a/b;
                for(j=0; j<i; j++)
                  if(mod[j] == mod[i]) {
                        flag = 1;
                        break;
                    }
                if(flag == 1) break;
            }
            printf("%d.", c);
            for(k=0; k<j; k++)
                printf("%d", afterpoint[k]);
            printf("(");
            if(i-j >50){
                for(k=j; k< j+50; k++)
                    printf("%d", afterpoint[k]);
                printf("...");
            }
            else {
                for(k=j; k<i; k++)
                    printf("%d", afterpoint[k]);
            }
            printf(")
    ");
            printf("   %d = number of digits in repeating cycle
    
    ", i-j);
        }
        return 0;
    }


  • 相关阅读:
    自动化框架——PO设计模式自学——参数化配置——ini配置文件——简单读取配置文件
    自动化框架——PO设计模式自学——参数化配置——ini配置文件——转载
    自动化框架——PO设计模式自学——第三种定位方法 ——函数传入的是一个元组
    自动化框架——PO设计模式自学——第三种定位方法
    自动化框架——PO设计模式自学——简单百度登录,搜索封装
    自动化框架——PO设计模式自学——简单百度登录封装
    python+selenium显示等待、隐式等待和强制等待的区别 ——经典解读
    JMeter——各种配置
    软件测试——分类
    JMeter——上传下载项目——json extractor获取数组类型的数据
  • 原文地址:https://www.cnblogs.com/Genesis2018/p/8304839.html
Copyright © 2020-2023  润新知