• 矩阵之间无循环计算L2距离


    实现两个矩阵的无循环计算欧氏距离 Euclidean distance

    navigation:
    *[1.问题描述](#1.problems sources)
    *[2.解决方法](#2.no loop cal the distances)

    1.问题来源

    kNN算法中会计算两个矩阵的距离

    可以使用循环的方法来实现,效率较低

    def compute_distances_one_loop(self, X):
        """
        train:5000x3072
        test: 500x3072
        - X: A numpy array of shape (num_test, D) containing test data
        Returns:
        - dists: A numpy array of shape (num_test, num_train) where dists[i, j]
          is the Euclidean distance between the ith test point and the jth training
          point.
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
        for i in range(num_test):
          #######################################################################
          # TODO:                                                               #
          # Compute the l2 distance between the ith test point and all training #
          # points, and store the result in dists[i, :].                        #
          #######################################################################
          distance=np.sqrt(np.sum(np.square(self.X_train - X[i,:]),axis=1))
          dists[i,:]=distance
        return dists
    

    2.无循环计算L2 distances

    一眼看到这个代码,真的是被深深折服!厉害,值得细细学习搞懂。

    def compute_distances_no_loops(self, X):
        """
        Compute the distance between each test point in X and each training point
        in self.X_train using no explicit loops.
        Input / Output: Same as compute_distances_two_loops
        """
        num_test = X.shape[0]
        num_train = self.X_train.shape[0]
        dists = np.zeros((num_test, num_train))
    
        #########################################################################
        # TODO:                                                                 #
        # Compute the l2 distance between all test points and all training      #
        # points without using any explicit loops, and store the result in      #
        # dists.                                                                #
        #                                                                       #
        # You should implement this function using only basic array operations; #
        # in particular you should not use functions from scipy.                #
        #                                                                       #
        # HINT: Try to formulate the l2 distance using matrix multiplication    #
        #       and two broadcast sums.                                         #
        #########################################################################
    
        M = np.dot(X, self.X_train.T)
        nrow=M.shape[0]
        ncol=M.shape[1]
        te = np.diag(np.dot(X,X.T))
        tr = np.diag(np.dot(self.X_train,self.X_train.T))
        te= np.reshape(np.repeat(te,ncol),M.shape)
        tr = np.reshape(np.repeat(tr, nrow), M.T.shape)
        sq=-2 * M +te+tr.T
        dists = np.sqrt(sq)
    
        return dists
    

    可能一下子有点懵,不着急 我们举个例子一步一步理解

    要先知道计算L2的距离公式:

    [L2(x_{i},x_{j})=(sum_{i=1}^{n} mid x_{i}^{(l)} - x_{j}^{(l)} mid ^{2})^{frac{1}{2}} ]

    计算L2距离需要得到 两点距离差的平方和的开方
    再熟悉一个基本公式

    [(a-b)^{2}= a^{2}- 2ab+b^{2} ]

    # 假设 x:4x3  ,y: 2x3 
    # 最后输出一个 2x4矩阵
    import numpy as np
    >>> x=np.array([[1,2,3],[3,4,5],[5,6,7],[7,8,9]])
    >>> x
    array([[1, 2, 3],
           [3, 4, 5],
           [5, 6, 7],
           [7, 8, 9]])
    >>> y=np.array([[2,3,4],[1,2,3]])
    >>> y
    array([[2, 3, 4],
           [1, 2, 3]])
    # 计算两个矩阵的乘积
    >>> M=np.dot(y,x.T)
    >>> M
    array([[20, 38, 56, 74],
           [14, 26, 38, 50]])
    # 保存乘积矩阵的行列
    >>> nrow=M.shape[0]
    >>> ncol=M.shape[1]
    >>> nrow
    2
    >>> ncol
    4
    

    先计算,提取出对角元素

    >>> te=np.diag(np.dot(y,y.T))
    >>> tr=np.diag(np.dot(x,x.T))
    >>> te
    array([29, 14])
    >>> tr
    array([ 14,  50, 110, 194])
    

    按对角元素来进行扩充,满足矩阵计算要求

    得到(a^{2}),(b^{2})

    # 继续整理
    >>> te=np.reshape(np.repeat(te,ncol),M.shape)  # ncol:4 ,M: 2x4
    >>> tr=np.reshape(np.repeat(tr,nrow),M.T.shape) #nrow:2 ,M.T:4x2
    >>> te
    array([[29, 29, 29, 29],
           [14, 14, 14, 14]])
    >>> tr
    array([[ 14,  14],
           [ 50,  50],
           [110, 110],
           [194, 194]])
    

    (-2ab)就是-2*M
    计算距离的开方

    >>> sq=-2*M+te+tr.T
    >>> dists=np.sqrt(sq)
    >>> sq
    array([[  3,   3,  27,  75],
           [  0,  12,  48, 108]])
    >>> dists
    array([[ 1.73205081,  1.73205081,  5.19615242,  8.66025404],
           [ 0.        ,  3.46410162,  6.92820323, 10.39230485]])
    
    
    不要用狭隘的眼光看待不了解的事物,自己没有涉及到的领域不要急于否定. 每天学习一点,努力过好平凡的生活.
  • 相关阅读:
    ubuntu查看安装的pytorch/cuda版本
    go不使用工具包将大写字符转成小写字符的方法
    使用Nexus搭建Maven私服
    maven setting.xml配置说明
    maven的仓库、生命周期与插件
    maven项目搭建
    maven之详解继承与聚合
    Maven核心概念之依赖,聚合与继承
    commons-logging日志系统
    新建我的 第一个maven项目
  • 原文地址:https://www.cnblogs.com/GeekDanny/p/10179251.html
Copyright © 2020-2023  润新知