• 图割Graph-Cut的最大流实现


    利用最大流标号法求解最大流,详见代码:

    Version:未加头尾节点版;

    缺点:havn't take nodes' pixels into consideration

    /************************************************************************/
    /*                                   MaxFlow solve graph cut program                                                            */
    /************************************************************************/
    /*
    File description:
    This program for graph cut based on Ford - Fulkerson Algorithm.
    Input: 
        M(edge number) N(node number)
        then M lines input 3 parameters each line:
            start_point end_point edge_capacity
        e.g 5 4 1 4 40 1 2 20 2 4 10 4 3 30 3 2 10
    output:
        Line 1:maxflow value
        Line2:nodes in Class 1
        e.g 
        MAX Flow is 50
        nodes in class S: 1 2
    =========================================================================
    CreateTime:2011-8-8
    Author:@Zhang Ruiqing
    */
    #include<iostream>
    #include<queue>
    using namespace std;
    #define N 250//point
    #define M 250*250//edge
    #define INF 1000000000
    #define min(a,b) a<b?a:b
    
    int pre[N],map[N][N];
    int minlen[N];//minlen[i] represents min length from s to i
    int pathmin[N];//min flow in this path from i to t
    queue<int>Q;
    
    int n,m,s,t;
    
    void init(int s)
    {
        memset(pre,0,sizeof(pre));
        for(int i=0;i<=n;i++)
            minlen[i]=pathmin[i]=INF;
        minlen[s]=0;
    }
    
    bool bfs(int s,int t)
    {
        init(s);
        //push start node
        Q.push(s);
        while(!Q.empty())
        {
            int now=Q.front();
            Q.pop();
            for(int i=1;i<=n;i++)
            {
                if(map[now][i]!=0&&minlen[now]+map[now][i]<minlen[i])
                {
                    minlen[i]=minlen[now]+map[now][i];
                    pre[i]=now;
                    pathmin[i]=min(pathmin[now],map[now][i]);
                    Q.push(i);
                }
            }
        }
        if(minlen[n]==INF)
            return false;
        return true;
    }
    
    int max_flow(int s,int t)
    {
        int res=0;
        while(bfs(s,t))//if can find an augment road
        {
            int minflow=pathmin[n];//minimal flow in the path
            int point=t;//calculate from end point t to start point s
            while(point!=s)
            {
                int prep=pre[point];
                map[prep][point]-=minflow;//positive road -= flow
                map[point][prep]+=minflow;//nagative road+= flow
                point=prep;
            }
            res+=minflow;
        }
        return res;
    }
    
    int main()
    {
        int i,j;
        int a,b,c;
        while(scanf("%d%d",&m,&n)!=EOF)
        {
            memset(map,0,sizeof(map));
            for(i=0;i<m;i++)
            {
                cin>>a>>b>>c;
                map[a][b]+=c;
            }
            s=1;
            t=n;
            cout<<"MAX Flow is "<<max_flow(s,t)<<endl;
    
            cout<<"nodes in class S: 1 ";
            for(i=0;i<n;i++)
            {
                if(pathmin[i]!=INF)
                    cout<<i<<" ";
            }
            cout<<endl;
        }
        return 0;
    }

    from: http://blog.csdn.net/abcjennifer/article/details/6668913

  • 相关阅读:
    Delphi TListView刷新闪烁问题
    GO语言下载、安装、配置
    理解领域模型Domain Model
    Competing Consumers Pattern (竞争消费者模式)
    Compensating Transaction Pattern(事务修正模式)
    一致性hash算法简介
    CQRS, Task Based UIs, Event Sourcing agh!
    Circuit Breaker Pattern(断路器模式)
    Cloud Design Patterns: Prescriptive Architecture Guidance for Cloud Applications 云设计模式:云应用的规范架构指导
    Cache-Aside Pattern(缓存模式)
  • 原文地址:https://www.cnblogs.com/GarfieldEr007/p/5374093.html
Copyright © 2020-2023  润新知