• leetcode 332 Reconstruct Itinerary


    题目连接

    https://leetcode.com/problems/reconstruct-itinerary/ 

    Reconstruct Itinerary

    Description

    Given a list of airline tickets represented by pairs of departure and arrival airports [from, to], reconstruct the itinerary in order. All of the tickets belong to a man who departs from JFK. Thus, the itinerary must begin with JFK.

    Note:

    1. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string. For example, the itinerary ["JFK", "LGA"] has a smaller lexical order than ["JFK", "LGB"].
    2. All airports are represented by three capital letters (IATA code).
    3. You may assume all tickets form at least one valid itinerary.

    Example 1:
    tickets = [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
    Return ["JFK", "MUC", "LHR", "SFO", "SJC"].

    Example 2:
    tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
    Return ["JFK","ATL","JFK","SFO","ATL","SFO"].
    Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"]. But it is larger in lexical order.

    题目大意: 从"JFK"出发找出一个序列使得所有的tickets用完,注意所求的结果要求字典序最小.
    思路: 深搜,注意要标记已经访问过的节点(回溯时要记得节点还原)。
    PS: 用完$n$张票当然需要用$n+1$个点

    class Solution {
    public:
        vector<string> findItinerary(vector<pair<string, string>> tickets) {
            vector<string> res;
            if(tickets.empty()) return res;
            for(auto &r: tickets) mp[r.first].insert({ r.second, false });
            res.push_back("JFK");
            dfs("JFK", res, tickets.size());
            return res;
        }
        bool dfs(string from, vector<string> &res, int n) {
            if((int)res.size() == n + 1) return true;
            for(auto r = mp[from].begin(); r != mp[from].end(); ++r) {
                string temp = (*r).first;
                auto c = mp[from].find({ temp, false });
                if(c == mp[from].end()) continue;
                res.push_back(temp);
                mp[from].erase(c);
                mp[from].insert({ temp, true });
                if(dfs(temp, res, n)) return true;
                res.pop_back();
                c = mp[from].find({ temp, true });
                if(c == mp[from].end()) continue;
                mp[from].erase(c);
                mp[from].insert({ temp, false });
            }
            return false;
        }
    private:
        unordered_map<string, multiset<pair<string, bool>>> mp;
    };
  • 相关阅读:
    torchvision.transforms用法
    下采样上采样 nn.MaxPool2d() nn.AvgPool2d()池化层
    resnet系列网络(BottelNeck、BasicBlock)
    alexnet网络结构及pytorch实现
    pytorch 使用Module类和Sequential类自定义模型
    model.eval()和model.train()
    RNN循环神经网络recurrent neural network和lstm、gru
    python assert断言
    LeNet:GradientBased Learning Applied to Document Recognition
    11.innodb的行格式
  • 原文地址:https://www.cnblogs.com/GadyPu/p/5612534.html
Copyright © 2020-2023  润新知