• poj 1330 Nearest Common Ancestors


    题目连接

    http://poj.org/problem?id=1330  

    Nearest Common Ancestors

    Description

    A rooted tree is a well-known data structure in computer science and engineering. An example is shown below: 

     
    In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is. 

    For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y. 

    Write a program that finds the nearest common ancestor of two distinct nodes in a tree. 

    Input

    The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.。

    Output

    Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

    Sample Input

    2
    16
    1 14
    8 5
    10 16
    5 9
    4 6
    8 4
    4 10
    1 13
    6 15
    10 11
    6 7
    10 2
    16 3
    8 1
    16 12
    16 7
    5
    2 3
    3 4
    3 1
    1 5
    3 5

    Sample Output

    4
    3

    LCA裸题,测模板。。

    #include <algorithm>
    #include <iostream>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <vector>
    using namespace std;
    const int N = 10010;
    struct Tarjan_Lac {
    	bool vis[N];
    	struct edge { int to, next; }G[N << 1];
    	int A, B, tot, ans, root, par[N], head[N];
    	inline void init(int n) {
    		ans = tot = 0;
    		for (int i = 0; i < n + 2; i++) {
    			par[i] = i;
    			vis[i] = false;
    			head[i] = -1;
    		}
    	}
    	inline void add_edge(int u, int v) {
    		G[tot].to = v, G[tot].next = head[u], head[u] = tot++;
    		G[tot].to = u, G[tot].next = head[v], head[v] = tot++;
    	}
    	inline void built(int n) {
    		int u, v;
    		for (int i = 0; i < n - 1; i++) {
    			scanf("%d %d", &u, &v);
    			add_edge(u, v);
    			vis[v] = true;
    		}
    		for (int i = 1; i <= n; i++) { if (!vis[i]) root = i; }
    		memset(vis, false, sizeof(vis));
    		scanf("%d %d", &A, &B);
    	}
    	inline int find(int x) {
    		while (x != par[x]) {
    			x = par[x] = par[par[x]];
    		}
    		return x;
    	}
    	inline void tarjan(int u, int fa) {
    		for (int i = head[u]; ~i; i = G[i].next) {
    			int &v = G[i].to;
    			if (v == fa) continue;
    			tarjan(v, u);
    			vis[v] = true;
    			par[v] = u;
    		}
    		if (u == A && vis[B]) { ans = find(B); }
    		if (u == B && vis[A]) { ans = find(A); }
    	}
    	inline void solve(int n) {
    		init(n);
    		built(n);
    		tarjan(root, root);
    		printf("%d
    ", ans);
    	}
    }go;
    int main() {
    #ifdef LOCAL
    	freopen("in.txt", "r", stdin);
    	freopen("out.txt", "w+", stdout);
    #endif
    	int t, n;
    	scanf("%d", &t);
    	while (t--) {
    		scanf("%d", &n);
    		go.solve(n);
    	}
    	return 0;
    }
  • 相关阅读:
    【洛谷5304】[GXOI/ZOI2019] 旅行者(二进制分组+最短路)
    【LOJ6485】LJJ 学二项式定理(单位根反演)
    【CF932E】Team Work(第二类斯特林数简单题)
    【CF960G】Bandit Blues(第一类斯特林数)
    【洛谷4689】[Ynoi2016] 这是我自己的发明(莫队)
    【洛谷5355】[Ynoi2017] 由乃的玉米田(莫队+bitset)
    【洛谷5268】[SNOI2017] 一个简单的询问(莫队)
    【洛谷4688】[Ynoi2016] 掉进兔子洞(莫队+bitset)
    【洛谷3653】小清新数学题(数论)
    【洛谷6626】[省选联考 2020 B 卷] 消息传递(点分治基础题)
  • 原文地址:https://www.cnblogs.com/GadyPu/p/4992905.html
Copyright © 2020-2023  润新知