• hdu 4324 Triangle LOVE


    题目连接

    http://acm.hdu.edu.cn/showproblem.php?pid=4324  

    Triangle LOVE

    Description

    Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
    Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
      Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.

    Input

    The first line contains a single integer t (1 <= t <= 15), the number of test cases.
    For each case, the first line contains one integer N (0 < N <= 2000).
    In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
    It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).

    Output

    For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
    Take the sample output for more details.

    Sample Input

    2
    5
    00100
    10000
    01001
    11101
    11000
    5
    01111
    00000
    01000
    01100
    01110

    Sample Output

    Case #1: Yes
    Case #2: No

    拓扑排序。。

    #include<algorithm>
    #include<iostream>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<map>
    using std::map;
    using std::min;
    using std::find;
    using std::pair;
    using std::queue;
    using std::vector;
    using std::multimap;
    #define pb(e) push_back(e)
    #define sz(c) (int)(c).size()
    #define mp(a, b) make_pair(a, b)
    #define all(c) (c).begin(), (c).end()
    #define iter(c) __typeof((c).begin())
    #define cls(arr, val) memset(arr, val, sizeof(arr))
    #define cpresent(c, e) (find(all(c), (e)) != (c).end())
    #define rep(i, n) for(int i = 0; i < (int)n; i++)
    #define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
    const int N = 2010;
    const int INF = 0x3f3f3f3f;
    struct TopSort {
        struct edge { int to, next; }G[N * N];
        int tot, inq[N], head[N];
        inline void init() {
            tot = 0, cls(inq, 0), cls(head, -1);
        }
        inline void add_edge(int u, int v) {
            G[tot].to = v; G[tot].next = head[u]; head[u] = tot++;
        }
        void built(int n) {
            char buf[N];
            rep(i, n) {
                scanf("%s", buf);
                rep(j, n) {
                    int f = buf[j] - '0';
                    if(!f) continue;
                    inq[j + 1]++;
                    add_edge(i + 1, j + 1);
                }
            }
        }
        inline bool bfs(int n) {
            int topNum = 0;
            queue<int> q;
            rep(i, n) {
                if(!inq[i + 1]) {
                    q.push(i + 1);
                }
            }
            while(!q.empty()) {
                int u = q.front(); q.pop();
                topNum++;
                for(int i = head[u]; ~i; i = G[i].next) {
                    if(--inq[G[i].to] == 0) {
                        q.push(G[i].to);
                    }
                }
            }
            return topNum == n;
        }
        inline void solve(int n) {
            static int k = 1;
            init(), built(n);
            printf("Case #%d: %s
    ", k++, !bfs(n) ? "Yes" : "No");
        }
    }go;
    int main() {
    #ifdef LOCAL
        freopen("in.txt", "r", stdin);
        freopen("out.txt", "w+", stdout);
    #endif
        int t, n;
        scanf("%d", &t);
        while(t--) {
            scanf("%d", &n);
            go.solve(n);
        }
        return 0;
    }
  • 相关阅读:
    NOIP知识点&&模板整理【更新中】
    qbxt DAY7 T4
    qbxt DAY7 T2
    qbxt DAY 6 T3 柯西不等式和拉格朗日不等式
    qbxt DAY4 T4
    qbxt DAY4 T3
    #98. 表达式计算 杂想
    扫描线入门学习笔记 (主要讲解代码实现)
    学OI要知道的基础知识(咕咕咕)
    主定理学习笔记(总结向)
  • 原文地址:https://www.cnblogs.com/GadyPu/p/4792954.html
Copyright © 2020-2023  润新知