题目描述
在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。
由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。
输入
第一行包含两个用空格隔开的整数N、M,分别表示岔口和河道的数目,岔口从1到N编号。接下来M行,每行包含两个用空格隔开的整数u、v,描述一条连接岔口u和岔口v的河道,水流方向为自u向v。 N ≤ 100 M ≤ 1 000
输出
第一行包含一个整数K,表示最多能选取的祭祀点的个数。
样例输入
4 4
1 2
3 4
3 2
4 2
样例输出
2
题解
Floyd+拆点+网络流最小割
看了网上那些高端的做法,不明觉厉。
最多能保留几个点,即最少需要去掉几个点,即最小割。
先用Floyd求出两个点是否能同时选择(即不连通),然后建图,如果两个不同的点i和j不能同时选择,则加i->j'的边,容量为inf。
再加源点s->i的边,容量为1,加i'->汇点t的边,容量为1。
然后跑dinic即可,答案为n-maxflow。
UPD:这个应该叫Dilworth定理吧,DAG最小链覆盖等于最长反链,本题要求最长反链可以转化为最小链覆盖来求,最小链覆盖求法见上。
#include <cstdio> #include <cstring> #include <queue> #define inf 0x7fffffff using namespace std; queue<int> q; int map[110][110] , head[210] , to[12000] , val[12000] , next[12000] , cnt = 1 , dis[210] , s , t; void add(int x , int y , int z) { to[++cnt] = y; val[cnt] = z; next[cnt] = head[x]; head[x] = cnt; } bool bfs() { int x , i; while(!q.empty()) q.pop(); memset(dis , 0 , sizeof(dis)); dis[s] = 1; q.push(s); while(!q.empty()) { x = q.front(); q.pop(); for(i = head[x] ; i ; i = next[i]) { if(val[i] && !dis[to[i]]) { dis[to[i]] = dis[x] + 1; if(to[i] == t) return 1; q.push(to[i]); } } } return 0; } int dinic(int x , int low) { if(x == t) return low; int temp = low , i , k; for(i = head[x] ; i ; i = next[i]) { if(val[i] && dis[to[i]] == dis[x] + 1) { k = dinic(to[i] , min(temp , val[i])); if(!k) dis[to[i]] = 0; val[i] -= k , val[i ^ 1] += k; if(!(temp -= k)) break; } } return low - temp; } int main() { int n , m , i , j , k , x , y , ans = 0; scanf("%d%d" , &n , &m); s = 0 , t = 2 * n + 1; for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x , &y) , map[x][y] = 1; for(k = 1 ; k <= n ; k ++ ) for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= n ; j ++ ) map[i][j] |= map[i][k] & map[k][j]; for(i = 1 ; i <= n ; i ++ ) add(s , i , 1) , add(i , s , 0) , add(i + n , t , 1) , add(t , i + n , 0); for(i = 1 ; i <= n ; i ++ ) for(j = 1 ; j <= n ; j ++ ) if(i != j && map[i][j]) add(i , j + n , inf) , add(j + n , i , 0); while(bfs()) ans += dinic(s , inf); printf("%d " , n - ans); return 0; }