• Codeforces 1311F Moving Points


    题目链接
    根据题意,d是两个点的最短距离,分析知,假设(x_i)<(x_j), 若(v_i)>(v_j),那么d(i,j)一定为0,因为i一定能追上j,否则,d(i,j)就为其初始距离
    那我们就转化问题为一个二维偏序问题,求(x_i)<(x_j)(v_i)<(v_j),满足这个条件的每个点对之间的距离
    很容易想到定一序,另一序用树状数组维护的统计法,假设现在是(x_i),满足上述条件有k个,那么,对(x_i)的统计答案为:(sum_{j=i-k}^{i-1}(x_i-x_j)),拆开,就是(k*x_i-sum_{j=i-k}^{i-1}x_j)
    那我们可以维护2个树状数组,分别维护上述的2个数,满足条件的个数与满足条件的这些数的x的和即可

    #include<bits/stdc++.h>
    using namespace std;
    #define lowbit(x) ((x)&(-x))
    typedef long long LL;
    typedef pair<int,int> pii;
    
    const int maxn = 2e5+5;
    
    struct Node {
        int x, v;
    } Nodes[maxn];
    
    int all_x[maxn];
    LL C1[maxn], C2[maxn];
    
    void add(LL val, int pos, int n) {
        for(; pos <= n; pos += lowbit(pos))
            C1[pos] += val, C2[pos]++;
    }
    
    pair<LL,LL> getsum(int pos) {
        LL ret1 = 0, ret2 = 0;
        for(;pos;pos-=lowbit(pos))
            ret1 += C1[pos], ret2 += C2[pos];
        return make_pair(ret1,ret2);
    }
    
    void run_case() {
        int n; 
        cin >> n;
        for(int i = 1; i <= n; ++i) {
            cin >> Nodes[i].x;
            all_x[i] = Nodes[i].x;
        }
        for(int i = 1; i <= n; ++i) {
            cin >> Nodes[i].v;
        }
        sort(all_x+1, all_x+1+n);
        int len = unique(all_x+1, all_x+1+n) - all_x - 1;
        for(int i = 1; i <= n; ++i) {
            Nodes[i].x = lower_bound(all_x+1, all_x+1+len, Nodes[i].x) - all_x;
        }
        sort(Nodes+1, Nodes+1+n, [&](Node &a, Node&b) {
            return a.v < b.v || (a.v == b.v && a.x < b.x);
        });
        LL ans = 0;
        for(int i = 1; i <= n; ++i) {
            add(all_x[Nodes[i].x], Nodes[i].x, n);
            auto now = getsum(Nodes[i].x-1);
            ans += 1LL*now.second*all_x[Nodes[i].x] - now.first;
        }
        cout << ans;
    }
    
    int main() {
        ios::sync_with_stdio(false), cin.tie(0);
        cout.flags(ios::fixed);cout.precision(10);
        //int t; cin >> t;
        //while(t--)
        run_case();
        cout.flush();
        return 0;
    }
    
  • 相关阅读:
    Problem about objc_exception_throw
    Change mime Types for mac's default apache
    重启Mac上的Apache服务
    通过无线网安装自己打包的ipa文件
    How to cancel selection for TreePanel(GXT)
    使用Jsoup获取网页内容超时设置
    HTML Meta, http-equiv, Refresh
    线上redis服务内存异常分析。
    C++/CLI 本地字符串和托管字符串之间的转换
    DWF Toolkit on Microsoft Windows
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12361988.html
Copyright © 2020-2023  润新知