• luogu P4013 数字梯形问题


    三倍经验,三个条件,分别对应了常见的3种模型,第一种是限制每个点只能一次且无交点,我们可以把这个点拆成一个出点一个入点,capacity为1,这样就限制了只选择一次,第二种是可以有交点,但不能有交边,那我们就不需要拆点,限制每条capacity都为1就可以了,第三种直接连,没有限制(

    #include<bits/stdc++.h>
    using namespace std;
    #define lowbit(x) ((x)&(-x))
    typedef long long LL;
    
    const int maxm = 1e6+5;
    const int INF = 0x3f3f3f3f;
    
    struct edge{
        int u, v, cap, flow, cost, nex;
    } edges[maxm];
    
    int head[maxm], cur[maxm], cnt, fa[maxm], d[maxm], buf[43][43], num[43][43], ID;
    bool inq[maxm];
    
    void init() {
        memset(head, -1, sizeof(head));
    }
    
    void add(int u, int v, int cap, int cost) {
        edges[cnt] = edge{u, v, cap, 0, cost, head[u]};
        head[u] = cnt++;
    }
    
    void addedge(int u, int v, int cap, int cost) {
        add(u, v, cap, cost), add(v, u, 0, -cost);
    }
    
    bool spfa(int s, int t, int &flow, LL &cost) {
        //for(int i = 0; i <= n+1; ++i) d[i] = INF; //init()
        memset(d, 63, sizeof(d));
        memset(inq, false, sizeof(inq));
        d[s] = 0, inq[s] = true;
        fa[s] = -1, cur[s] = INF;
        queue<int> q;
        q.push(s);
        while(!q.empty()) {
            int u = q.front();
            q.pop();
            inq[u] = false;
            for(int i = head[u]; i != -1; i = edges[i].nex) {
                edge& now = edges[i];
                int v = now.v;
                if(now.cap > now.flow && d[v] > d[u] + now.cost) {
                    d[v] = d[u] + now.cost;
                    fa[v] = i;
                    cur[v] = min(cur[u], now.cap - now.flow);
                    if(!inq[v]) {q.push(v); inq[v] = true;}
                }
            }
        }
        if(d[t] == INF) return false;
        flow += cur[t];
        cost += 1LL*d[t]*cur[t];
        for(int u = t; u != s; u = edges[fa[u]].u) {
            edges[fa[u]].flow += cur[t];
            edges[fa[u]^1].flow -= cur[t];
        }
        return true;
    }
    
    int MincostMaxflow(int s, int t, LL &cost) {
        cost = 0;
        int flow = 0;
        while(spfa(s, t, flow, cost));
        return flow;
    }
    
    void run_case() {
        int m, n; cin >> m >> n;
        int s = 0, t = 1e6;
        // first
        init();
        for(int i = m; i < n+m; ++i)
            for(int j = 1; j <= i; ++j) {
                num[i][j] = ++ID;
                cin >> buf[i][j];
                addedge(ID<<1, (ID<<1)|1, 1, -buf[i][j]);
            }
        for(int i = m; i < n+m-1; ++i) {
            for(int j = 1; j <= i; ++j) {
                addedge((num[i][j]<<1)|1, num[i+1][j]<<1, 1, 0);
                addedge((num[i][j]<<1)|1, num[i+1][j+1]<<1, 1, 0);
            }
        }
        for(int i = 1; i <= m; ++i) addedge(s, num[m][i]<<1, 1, 0);
        for(int i = 1; i < n+m; ++i) addedge((num[n+m-1][i]<<1)|1, t, 1, 0);
        LL cost = 0;
        MincostMaxflow(s, t, cost);
        cout << -cost << "
    ";
        // second
        init();
        for(int i = m; i < n+m-1; ++i)
            for(int j = 1; j <= i; ++j) {
                addedge(num[i][j], num[i+1][j], 1, -buf[i+1][j]);
                addedge(num[i][j], num[i+1][j+1], 1, -buf[i+1][j+1]);
            }
        for(int i = 1; i <= m; ++i) addedge(s, num[m][i], 1, -buf[m][i]);
        for(int i = 1; i < n+m; ++i) addedge(num[n+m-1][i], t, INF, 0);
        cost = 0, MincostMaxflow(s, t, cost);
        cout << -cost << "
    ";
        // third
        init();
        for(int i = m; i < n+m-1; ++i)
            for(int j = 1; j <= i; ++j) {
                addedge(num[i][j], num[i+1][j], INF, -buf[i+1][j]);
                addedge(num[i][j], num[i+1][j+1], INF, -buf[i+1][j+1]);
            }
        for(int i = 1; i <= m; ++i) addedge(s, num[m][i], 1, -buf[m][i]);
        for(int i = 1; i < n+m; ++i) addedge(num[n+m-1][i], t, INF, 0);
        cost = 0, MincostMaxflow(s, t, cost);
        cout << -cost << "
    ";
    }
    
    int main() {
        ios::sync_with_stdio(false), cin.tie(0);
        run_case();
        cout.flush();
        return 0;
    }
  • 相关阅读:
    TO DO
    Ethernet、IP、TCP、UDP、ARP数据格式与封装解封
    Django documentation重点段落
    Docker、Docker Compose内容汇总
    systrace
    超级无敌傻瓜教程系列之 GraphQL教程
    Java常用lambda表达式
    MySQL索引与数据页的关系
    wireshark抓包127.0.0.1/本地
    OpenAL采集手动修改默认设备问题
  • 原文地址:https://www.cnblogs.com/GRedComeT/p/12299631.html
Copyright © 2020-2023  润新知