• POJ 2488 A Knight's Journey


    A Knight's Journey
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 26188   Accepted: 8942

    Description

    Background  The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey  around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans? 
    Problem  Find a path such that the knight visits every square once. The knight can start and end on any square of the board.

    Input

    The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .

    Output

    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number.  If no such path exist, you should output impossible on a single line.

    Sample Input

    3
    1 1
    2 3
    4 3

    Sample Output

    Scenario #1:
    A1
    
    Scenario #2:
    impossible
    
    Scenario #3:
    A1B3C1A2B4C2A3B1C3A4B2C4
    

    Source

    TUD Programming Contest 2005, Darmstadt, Germany
     
    思路:简单DFS,但是第一次接触字典序啊,A1的位置搜索第一次得到的路径一定就是答案
    证明正在进行中
     
    代码:
     
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    int map[30][30];
    int hash[30][30];
    int n,m,t;
    int flag;
    int move[8][2] = {{-1,-2},{1,-2},{-2,-1},{2,-1},{-2,1},{2,1},{-1,2},{1,2}};
    void DFS(int x,int y,int sqshu)
    {
        //printf("%d %d have %d ",x,y,hash[x][y]);
        if(flag == 1)
            return ;
        if(hash[x][y] == sqshu)
        {
             flag = 1;
             return ;
        }
        for(int i = 0;i < 8;i ++)
        {
            if(!map[x + move[i][0]][y + move[i][1]] &&
            (x + move[i][0]) >= 1 && (x + move[i][0]) <= n
            && (y + move[i][1]) >= 1 && (y + move[i][1]) <= m)
            {
                map[x + move[i][0]][y + move[i][1]] = 1;
                hash[x + move[i][0]][y + move[i][1]] = hash[x][y] + 1;
                DFS(x + move[i][0],y + move[i][1],sqshu);
                map[x + move[i][0]][y + move[i][1]] = 0;
                if(flag == 0)
                {
                   hash[x + move[i][0]][y + move[i][1]] = 0;
                }
                if(flag == 1)
                   return;
            }
        }
        return ;
    }
    int main()
    {
        scanf("%d",&t);
        for(int l = 1;l <= t;l ++)
        {
            scanf("%d%d",&n,&m);
            printf("Scenario #%d: ",l);
            memset(hash,0,sizeof(hash));
            memset(map,0,sizeof(map));
            flag = 0;
            hash[1][1] = 1;
            map[1][1] = 1;
            DFS(1,1,n * m);
            if(flag == 0)
                printf("impossible ");
            else
            {
                for(int k = 1;k <= n * m;k ++)
                {
                   for(int i = 1;i <= n;i ++)
                      for(int j = 1;j <=  m;j ++)
                          {
                                if(hash[i][j] == k)
                                    printf("%c%d",j + 'A' - 1,i);
                          }
                }
                printf(" ");
            }
            printf(" ");
        }
        return 0;
    }
           
           
           
     
  • 相关阅读:
    WITH HINDSIGHT
    圆桌最后冲刺
    圆桌总结
    圆桌十日冲刺之⑨
    圆桌十日冲刺之八
    圆桌十日冲刺之七
    圆桌十日冲刺之六
    【09NOIP提高组】Hankson 的趣味题(信息学奥赛一本通 1856)(洛谷 1072)
    灯泡(信息学奥赛一本通 1438)
    最大公约数(信息学奥赛一本通 1627)
  • 原文地址:https://www.cnblogs.com/GODLIKEING/p/3303600.html
Copyright © 2020-2023  润新知