• poj 1273 && hdu 1532 Drainage Ditches (网络最大流)


    Drainage Ditches
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 53640   Accepted: 20448

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

    Source

     
     
    n是点数,m是边数
     
    EK算法:
        O(n*m*m)
        效率最低,没有任何优化,直接吧标号法实现。
        算法思想:一直重复搜索增广路径的过程,知道不存在增广路径。而此处对于增广路径的搜索,则采用了邻接矩阵的方法,耗时比较大,使用邻接表会更清晰的表现出标号法的过程。
     1 //312K    0MS    C++    1400B    2014-05-03 17:50:04
     2 //最大流模板题 
     3 #include<iostream>
     4 #include<queue>
     5 #define INF 0x7ffffff
     6 #define N 205
     7 using namespace std;
     8 int flow[N],vis[N];
     9 int g[N][N],father[N];
    10 int maxflow,n,m;
    11 int Min(int a,int b)
    12 {
    13     return a<b?a:b;
    14 }
    15 void EK(int s,int e)
    16 {
    17      queue<int>Q;
    18      while(1){
    19          memset(vis,0,sizeof(vis));
    20          memset(flow,0,sizeof(flow));
    21          Q.push(s);
    22          flow[s]=INF;
    23          while(!Q.empty()){
    24              int u=Q.front();
    25              Q.pop();
    26              for(int v=1;v<=n;v++){
    27                  if(!vis[v] && g[u][v]>0){
    28                      vis[v]=1;
    29                      father[v]=u;
    30                      Q.push(v);
    31                      flow[v]=Min(flow[u],g[u][v]);
    32                  }
    33              }
    34              if(flow[e]>0){
    35                  while(!Q.empty()) Q.pop();
    36                  break;
    37              }
    38          }
    39          if(flow[e]==0) break;
    40          for(int i=e;i!=s;i=father[i]){
    41              g[father[i]][i]-=flow[e];
    42              g[i][father[i]]+=flow[e];
    43          }
    44          maxflow+=flow[e];
    45      }
    46 }
    47 int main(void)
    48 {
    49     int a,b,c;
    50     while(scanf("%d%d",&m,&n)!=EOF)
    51     {
    52         memset(g,0,sizeof(g));
    53         maxflow=0;
    54         while(m--){
    55             scanf("%d%d%d",&a,&b,&c);
    56             g[a][b]+=c;
    57         }
    58         EK(1,n);
    59         printf("%d
    ",maxflow);
    60     }
    61     return 0;
    62 }
    View Code

    dinic算法:

        O(n*n*m)(如果用bfs实现增广路径的话则是O(n*m*m),好像是另一个算法了)

        效率比EK高,因为多了优化。

        算法思想:重复搜索增广路径的动作,而判定条件改为直到不能分层为止,能避免很多不必要的过程。(因为偷懒所以用了STL实现队列和邻接表)

     1 //15MS    340K    1496 B    G++
     2 #include<iostream>
     3 #include<queue>
     4 #include<vector>
     5 #define N 205
     6 #define INF 0x7ffffff
     7 using namespace std;
     8 struct node{
     9     int v,c;
    10     node(int a,int b){
    11         v=a;c=b;
    12     }
    13 };
    14 int n,m;
    15 vector<node>V[N];
    16 int dis[N];
    17 queue<int>Q;
    18 bool bfs() //分层 
    19 {
    20     memset(dis,-1,sizeof(dis));
    21     dis[1]=0;
    22     int u=1;
    23     Q.push(u);
    24     while(!Q.empty()){
    25         u=Q.front();
    26         Q.pop();
    27         for(int i=0;i<V[u].size();i++){
    28             if(dis[V[u][i].v]==-1 && V[u][i].c>0){
    29                 dis[V[u][i].v]=dis[u]+1;
    30                 Q.push(V[u][i].v);
    31             }
    32         }
    33     } 
    34     return dis[n]>=0;
    35 }
    36 int dfs(int u,int minn) //增广 
    37 {
    38     if(u==n) return minn;
    39     for(int i=0;i<V[u].size();i++){
    40         if(dis[V[u][i].v]==dis[u]+1 && V[u][i].c>0){
    41             int c=V[u][i].c;
    42             minn=minn<c?minn:c;
    43             int ans=dfs(V[u][i].v,minn);
    44             if(ans>0){
    45                 V[u][i].c-=ans;
    46                 return ans;
    47             }
    48         }
    49     }
    50     return 0;
    51 }
    52 int dinic()
    53 {
    54     int ans=0;
    55     while(bfs()){
    56         ans+=dfs(1,INF);
    57         //printf("*%d
    ",ans);
    58     }
    59     return ans;
    60 }
    61 int main(void)
    62 {
    63     int u,v,c;
    64     while(scanf("%d%d",&m,&n)!=EOF)
    65     {
    66         for(int i=0;i<=n;i++)
    67             V[i].clear();
    68         for(int i=0;i<m;i++){
    69             scanf("%d%d%d",&u,&v,&c);
    70             V[u].push_back(node(v,c));
    71         }
    72         printf("%d
    ",dinic());
    73     }
    74     return 0;
    75 }
    View Code

    ISAP:

         O(n*n*m)

        算法思想:这个算法看的时间比较长,因为比较难找到合理化的解释,第一次基本是套用别人的模板,现在写一下自己的理解。

        算法复杂度上的分析我理解的不是很透彻,因此先借用别人的结果。而ISAP算法就分为几部分,开始先逆向BFS初始化距离标号,然后进入ISAP主函数,和标号法的思想差不多,(1)一直循环查找增广路径;(2)找到增广路径时则进行augment()处理,找不到时则回退retreat()处理;(3)当出现断层或则d[source]>=n时算法结束。

        推荐一个网站:http://blog.csdn.net/yuhailin060/article/details/4897608

        伪代码:

     1 algorithm Improved-Shortest-Augmenting-Path
     2  1 f <-- 0
     3  2 从终点 t 开始进行一遍反向 BFS 求得所有顶点的起始距离标号 d(i)
     4  3 i <-- s
     5  4 while d(s) < n do
     6  5     if i = t then    // 找到增广路
     7  6         Augment
     8  7         i <-- s      // 从源点 s 开始下次寻找
     9  8     if Gf 包含从 i 出发的一条允许弧 (i,j)
    10  9         then Advance(i)
    11 10         else Retreat(i)    // 没有从 i 出发的允许弧则回退
    12 11 return f
    13 
    14 procedure Advance(i)
    15 1 设 (i,j) 为从 i 出发的一条允许弧
    16 2 pi(j) <-- i    // 保存一条反向路径,为回退时准备
    17 3 i <-- j        // 前进一步,使 j 成为当前结点
    18 
    19 procedure Retreat(i)
    20 1 d(i) <-- 1 + min{d(j):(i,j)属于残量网络Gf}    // 称为重标号的操作
    21 2 if i != s
    22 3     then i <-- pi(i)    // 回退一步
    23 
    24 procedure Augment
    25 1 pi 中记录为当前找到的增广路 P
    26 2 delta <-- min{rij:(i,j)属于P}
    27 3 沿路径 P 增广 delta 的流量
    28 4 更新残量网络 Gf
    View Code

        题目解决的实现:

    邻接矩阵:

      1 //15MS    532K    2612 B    G++
      2 #include<stdio.h>
      3 #include<string.h>
      4 #define N 202
      5 #define inf 0x7fffffff
      6 int n,m,source,sink;
      7 int g[N][N],f[N][N];
      8 int pi[N];  //增广路径 
      9 int curnode[N];  //当前节点,优化循环 
     10 
     11 int queue[N]; //队列 
     12 
     13 int d[N];  //距离标号 
     14 int num[N];  //num[i] 为 d[j]=i 的数量,记录是否断层,断层结束算法 
     15 
     16 int bfs() //逆向bfs初始化距离标号 
     17 {
     18     int head=0,tail=0;
     19     for(int i=1;i<=n;i++)
     20         num[d[i]=n]++;
     21     
     22     num[n]--;
     23     d[sink]=0;
     24     num[0]++;
     25     
     26     queue[++tail]=sink;
     27     
     28     while(head!=tail){
     29         int u=queue[++head];
     30         
     31         for(int i=1;i<=n;i++){
     32             if(d[i]<n || g[i][u]==0) continue;
     33             
     34             queue[++tail]=i;
     35             
     36             num[n]--;
     37             d[i]=d[u]+1;
     38             num[d[i]]++; 
     39         }
     40     }
     41     return 0;
     42 }
     43 
     44 int augment() //处理增广路径 
     45 {
     46     int width=inf;
     47     for(int i=sink,j=pi[i];i!=source;i=j,j=pi[j]){
     48         if(g[j][i]<width) width=g[j][i]; 
     49     }
     50     
     51     for(int i=sink,j=pi[i];i!=source;i=j,j=pi[j]){
     52         g[j][i]-=width; f[j][i]+=width;
     53         g[i][j]+=width; f[i][j]-=width;
     54     }
     55     
     56     return width;
     57 }
     58 
     59 int retreat(int &i) //处理回退,重标号 
     60 {
     61     int temp;
     62     int mind=n-1;
     63     for(int j=1;j<=n;j++)
     64         if(g[i][j]>0 && d[j]<mind)
     65             mind=d[j];
     66     
     67     temp=d[i];
     68     
     69     num[d[i]]--;
     70     d[i]=mind+1;
     71     num[d[i]]++;
     72     
     73     if(i!=source) i=pi[i];
     74     
     75     return num[temp];
     76 }
     77 
     78 int maxflow(int s,int e) //ISAP求最大流 
     79 {
     80     int i,j,flow=0;
     81     
     82     source=s;
     83     sink=e;
     84     bfs();
     85     //for(int i=1;i<=n;i++) printf("*%d
    ",d[i]);
     86     for(i=1;i<=n;i++) curnode[i]=1;
     87     
     88     i=source;
     89     
     90     for( ; d[source]<n ; ){  //主循环 
     91         for(j=curnode[i];j<=n;j++)  //查找允许弧 
     92             if(g[i][j]>0 && d[i]==d[j]+1)
     93                 break;
     94         if(j<=n){   //存在允许弧 
     95             curnode[i]=j;
     96             pi[j]=i;
     97             i=j;
     98             
     99             if(i==sink){  //找到增广路径 
    100                 flow+=augment();
    101                 //printf("*%d %d
    ",pi[i],flow);
    102                 i=source;
    103             }
    104             
    105         }else{  //不存在允许弧 
    106             curnode[i]=1;
    107             if(retreat(i)==0) break; 
    108         }
    109     }
    110     return flow;
    111 }
    112 
    113 int main(void)
    114 {
    115     int a,b,c;
    116     while(scanf("%d%d",&m,&n)!=EOF)
    117     {
    118         memset(g,0,sizeof(g));
    119         memset(f,0,sizeof(f));
    120         for(int i=0;i<m;i++){
    121             scanf("%d%d%d",&a,&b,&c);
    122             g[a][b]+=c;
    123         }
    124         printf("%d
    ",maxflow(1,n));
    125     }
    126     return 0;
    127 }
    View Code

    邻接表:

     1 //15MS    320K    1811 B    G++    
     2 #include<iostream>
     3 #define N 1005
     4 #define inf 0x7fffffff
     5 using namespace std;
     6 struct node{
     7     int v;
     8     int c;
     9     int next;
    10 }edge[N];
    11 
    12 int head[N],eid;
    13 int n,m;
    14 
    15 int h[N];  //距离标号 
    16 int gap[N]; //记录是否断层 
    17 
    18 void addedge(int u,int v,int c) //有向图 
    19 {
    20     edge[eid].v=v;
    21     edge[eid].c=c;
    22     edge[eid].next=head[u];
    23     head[u]=eid++;
    24     edge[eid].v=u;
    25     edge[eid].c=0;
    26     //edge[eid].c=c; //有向图 
    27     edge[eid].next=head[v];
    28     head[v]=eid++;
    29 }
    30 int dfs(int u,int tc)
    31 {
    32     if(u==n) return tc; //找到增广路径 
    33     int c0;
    34     int minh=n-1;
    35     int temp=tc;
    36     for(int i=head[u];i!=-1;i=edge[i].next){ //遍历与u有关的弧 
    37          int v=edge[i].v;
    38          int c=edge[i].c;
    39          if(c>0){
    40              if(h[v]+1==h[u]){ //可行弧 
    41                  c0=temp<c?temp:c;
    42                  c0=dfs(v,c0);
    43                  edge[i].c-=c0;
    44                  edge[i^1].c+=c0;
    45                  temp-=c0;
    46                  if(h[1]>=n) return tc-temp;
    47                  if(temp==0) break;
    48              }
    49              if(h[v]<minh) minh=h[v]; //更新最短距离标号 
    50          }
    51     }
    52     if(temp==tc){ //不存在可行弧,回退操作 
    53         --gap[h[u]];
    54         if(gap[h[u]]==0) h[1]=n; //出现断层 
    55         h[u]=minh+1;
    56         ++gap[h[u]];
    57     }
    58     return tc-temp;
    59 }
    60 int ISAP() //isap算法 
    61 {
    62     int ans=0;
    63     memset(gap,0,sizeof(gap));
    64     memset(h,0,sizeof(h));
    65     gap[1]=n;
    66     while(h[1]<n){
    67         ans+=dfs(1,inf);
    68     }
    69     return ans;
    70 }
    71 int main(void)
    72 {
    73     int u,v,c;
    74     while(scanf("%d%d",&m,&n)!=EOF)
    75     {
    76         memset(head,-1,sizeof(head));
    77         eid=0;
    78         for(int i=0;i<m;i++){
    79             scanf("%d%d%d",&u,&v,&c);
    80             addedge(u,v,c);
    81         }
    82         printf("%d
    ",ISAP());
    83     }
    84     return 0;
    85 }
    86  
    View Code
  • 相关阅读:
    excel导出字符串
    Unity shader学习之屏幕后期处理效果之Bloom效果
    Unity shader学习之屏幕后期处理效果之高斯模糊
    Unity shader学习之屏幕后期处理效果之均值模糊
    Unity之Vector3.SignedAngle实现
    Unity shader学习之屏幕后期处理效果之边缘检测
    Unity shader学习之屏幕后期效果之调整屏幕亮度,饱和度,对比度
    Unity shader学习之Grab Pass实现玻璃效果
    Unity shader学习之菲涅耳反射
    策略模式学习三---总结
  • 原文地址:https://www.cnblogs.com/GO-NO-1/p/3705355.html
Copyright © 2020-2023  润新知