• 【Luogu P2704】[NOI2001] 炮兵阵地


    炮兵阵地:

    链接:

    洛谷

    题目大意:

    在一个棋盘上,一个棋子上下左右相邻两格内不能有别的棋,且棋子不能放在一些格子内。求最多的棋子数。

    正文:

    (f_{i,j,k}) 表示第 (i) 行的状态是 (j) 和前一行的状态是 (k) 的方案数。显然有:

    [f_{i,j,k}=max_l{f_{i-1,k,l}+mathrm{num}(j)}quad(jland k=0,jland l=0,kland l=0) ]

    代码:

    const int N = 110, M = 1030;
    
    inline ll Read()
    {
    	ll x = 0, f = 1;
    	char c = getchar();
    	while (c != '-' && (c < '0' || c > '9')) c = getchar();
    	if (c == '-') f = -f, c = getchar();
    	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
    	return x * f;
    }
    
    int n, m;
    int a[N], f[5][M][M];
    int able[N], num[N], cnt;
    
    void Prework()
    {
    	for (int i = 0; i < (1 << m + 1); i++)
    	{
    		if ((i & (i << 1)) || (i & (i << 2)) || (i & (i >> 1)) || (i & (i >> 2))) continue;
    		able[++cnt] = i;
    		for (int j = i; j; j >>= 1)
    			if (j & 1) num[cnt]++;
    		if ((a[1] & i) == i) f[1][cnt][0] = num[cnt];
    	}
    	for (int j = 1; j <= cnt; j++)
    	{
    		if((able[j] & a[2]) != able[j]) continue;
    		for (int k = 1; k <= cnt; k++)
    		{
    			if((able[k] & a[1]) != able[k]) continue;
    			if (able[j] & able[k]) continue;
    			f[0][j][k] = max(f[0][j][k], f[1][k][0] + num[j]);
    		}
    	}
    }
    
    int ans;
    
    int main()
    {
    	n = Read(), m = Read();
    	for (int i = 1; i <= n; i++)
    	{
    		char c[N]; scanf ("%s", c + 1);
    		for (int j = 1; j <= m; j++)
    			a[i] = a[i] * 2 + (c[j] == 'P'? 1: 0);
    	}
    	Prework();
    	for (int i = 3; i <= n; i++)
    	{
    		for (int j = 1; j <= cnt; j++)
    		{
    			if((able[j] & a[i]) != able[j]) continue;
    			for (int k = 1; k <= cnt; k++)
    			{
    				if((able[k] & a[i - 1]) != able[k]) continue;
    				if (able[j] & able[k]) continue;
    				for (int l = 1; l <= cnt; l++)
    				{
    					if((able[l] & a[i - 2]) != able[l]) continue;
    					if ((able[j] & able[l]) || (able[k] & able[l])) continue;
    					f[i % 2][j][k] = max(f[i % 2][j][k], f[(i - 1) % 2][k][l] + num[j]);
    				}
    				if (i == n) ans = max(ans, f[i % 2][j][k]);
    			}
    		}
    	}
    	printf ("%d", ans);
    	return 0;
    }
    
  • 相关阅读:
    数组(array)
    亲戚(relative)
    [ZJOI2016]小星星
    P4782 【模板】2-SAT 问题
    CF1065F Up and Down the Tree
    CF1065C Make It Equal
    CF1060F Shrinking Tree
    CF1060E Sergey and Subway(点分治)
    CF1060D Social Circles
    CF1060C Maximum Subrectangle
  • 原文地址:https://www.cnblogs.com/GJY-JURUO/p/15013737.html
Copyright © 2020-2023  润新知