• manacher算法求最长回文子串


    一:背景

    给定一个字符串,求出其最长回文子串。例如:

    1. s="abcd",最长回文长度为 1;
    2. s="ababa",最长回文长度为 5;
    3. s="abccb",最长回文长度为 4,即bccb。

    以上问题的传统思路大概是,遍历每一个字符,以该字符为中心向两边查找。其时间复杂度为$O(n^2)$,效率很差。

    1975年,一个叫Manacher的人发明了一个算法,Manacher算法(中文名:马拉车算法),该算法可以把时间复杂度提升到$O(n)$。下面来看看马拉车算法是如何工作的。

    二:算法过程分析

    由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是:在字符串首尾,及各字符间各插入一个字符(前提这个字符未出现在串里)。

    举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba和一个奇回文opxpo,被转换为#a#b#b#a##o#p#x#p#o#,长度都转换成了奇数

    定义一个辅助数组int p[],其中p[i]表示以 i 为中心的最长回文的半径,例如:

    i012345678910111213141516171819
    s_new[i] $ # a # b # b # a # h # o # p # x # p #
    p[i]   1 2 1 2 5 2 1 2 1 2 1 2 1 2 1 4 1 2 1

    可以看出,p[i] - 1正好是原字符串中最长回文串的长度。

    接下来的重点就是求解 p 数组,如下图:

    设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是mx = id + p[id]

    假设我们现在求p[i],也就是以 i 为中心的最长回文半径,如果i < mx,如上图,那么:

    if (i < mx)  
        p[i] = min(p[2 * id - i], mx - i);

    2 * id - i为 i 关于 id 的对称点,即上图的 j 点,而p[j]表示以 j 为中心的最长回文半径,因此我们可以利用p[j]来加快查找。

    三:代码

    #include <iostream>  
    #include <cstring>
    #include <algorithm>  
    
    using namespace std;
    
    char s[1000];
    char s_new[2000];
    int p[2000];
    
    int Init()
    {
        int len = strlen(s);
        s_new[0] = '$';
        s_new[1] = '#';
        int j = 2;
    
        for (int i = 0; i < len; i++)
        {
            s_new[j++] = s[i];
            s_new[j++] = '#';
        }
    
        s_new[j] = '';  // 别忘了哦
        
        return j;  // 返回 s_new 的长度
    }
    
    int Manacher()
    {
        int len = Init();  // 取得新字符串长度并完成向 s_new 的转换
        int max_len = -1;  // 最长回文长度
    
        int id;
        int mx = 0;
    
        for (int i = 1; i < len; i++)
        {
            if (i < mx)
                p[i] = min(p[2 * id - i], mx - i);  // 需搞清楚上面那张图含义, mx 和 2*id-i 的含义
            else
                p[i] = 1;
    
            while (s_new[i - p[i]] == s_new[i + p[i]])  // 不需边界判断,因为左有'$',右有''
                p[i]++;
    
            // 我们每走一步 i,都要和 mx 比较,我们希望 mx 尽可能的远,这样才能更有机会执行 if (i < mx)这句代码,从而提高效率
            if (mx < i + p[i])
            {
                id = i;
                mx = i + p[i];
            }
    
            max_len = max(max_len, p[i] - 1);
        }
    
        return max_len;
    }
    
    int main()
    {
        while (printf("请输入字符串:
    "))
        {
            scanf("%s", s);
            printf("最长回文长度为 %d
    
    ", Manacher());
        }
        return 0;
    }
    宝剑锋从磨砺出 梅花香自苦寒来
  • 相关阅读:
    hive metastore && hiveserver2 . 基本配置
    Flink HA 搭建坑
    protobuf 编译安装
    编译Hadoop 2.7.2支持压缩 转
    centos 6挂载磁盘
    python
    python之面向对象(一)
    python
    python-文件压缩和解压
    python-configparser模块
  • 原文地址:https://www.cnblogs.com/GHzcx/p/9146922.html
Copyright © 2020-2023  润新知