• 1- 基本概念(复杂网络学习笔记)


    复杂网络

    1. 基本概念

    • 网络的图表示(G=(V,E))
    • 节点数(N=|V|)
    • 边数 : (M=|E|)
    • 有向网络,无向网络 : 任一点对((i, j)和(j, i))对应同一条边,则为无向网络,反之成为有向.
    • 有权网络,无权网络 : 边有权值, 成为有权. 反之,无权
    • 两个节点的距离: 定义为两节点之间最短路径长度 : (d_{ij})
    • 网络的直径: 网络中中任意两个节点距离的最大值: (D=max(d_{ij}))
    • 平均路径长度 : 定义为任意两个节点之间距离的平均值: (L=frac{1}{frac{1}{2}N(N+1)}sum_{igeq j}d_{ij})

    为了方便数学处理,在公式中包含节点到节点自身的距离,所以是(N(N+1)), 乘(frac{1}{2})是因为无向网络.

    如下图示:


    2. 聚类系数

    • 网络中1个节点 (i) , 有 (k_i) 条边与之相连,
    • 也就是 (i)(k_i)邻居节点
    • 显然, 这(k_i)个节点之间最多可能有(k_i(k_i-1)/2)条边.
    • 设这(k_i)个节点之间真实边数为(E)
    • 则节点 (i)聚类系数:

    [C_i=frac{E}{k_i(k_i-1)/2}=frac{2E}{k_i(k_i-1)} ]

    从几何的特点看: 上式等价为:

    [C_i=frac{与点i相连的三角形数量}{与点i相连的三元组的数量} ]

    • 其中:与点i相连的三元组是指包括点i的三个节点,并且至少存在从节点i到其他两个节点的两条边.如下图所示:

    • 整个网络的聚类系数 : (C=frac{1}{N}sum_NC_i) , 即为所有节点聚类系数和的平均值.

    3. 度与度分布

    • 节点 (i) 的度: (k_i) ,定义为与节点 (i) 相连的节点的数量.
    • 出度 : (i) 指向 邻居节点的边的数目
    • 入度 : 邻居节点指向(i)的边的数目
    • 网络节点的平均度 : (k = frac{1}{N}sum_N k_i)

    度分布

    • 网络中节点度的分布情况可以用(P(k))表示, 其中(P(k)) 定义为网络中度为(k)的节点在整个网络中所占的比率.
    • 规则的格子有着简单的度序列:因为所有的节点具有相同的度,所有其度分布为Delta分布,它是单个尖峰.
    • 完全随机网络的度分布近似Poisson分布.这类网络也称为均匀网络.
    • 幂律分布也称为无标度分布,这类网络称为无标度网络.
  • 相关阅读:
    python 操作数据库
    python学习
    Java学习(十)
    Java学习(九)
    Java学习(八)
    Java学习(七)
    Java学习(六)
    Java学习(五)
    Java学习(四)
    Java学习(三)
  • 原文地址:https://www.cnblogs.com/GGTomato/p/11855668.html
Copyright © 2020-2023  润新知