• 《训练指南》上的计算几何模板


    不完整,待补充

    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    
    using namespace std;
    
    const double eps = 1e-10;
    
    struct Point
    {
        double x, y;
        Point( double x = 0, double y = 0 ):x(x), y(y) { }
    };
    
    typedef Point Vector;
    
    Vector operator+( Vector A, Vector B )       //向量加
    {
        return Vector( A.x + B.x, A.y + B.y );
    }
    
    Vector operator-( Vector A, Vector B )       //向量减
    {
        return Vector( A.x - B.x, A.y - B.y );
    }
    
    Vector operator*( Vector A, double p )      //向量数乘
    {
        return Vector( A.x * p, A.y * p );
    }
    
    Vector operator/( Vector A, double p )      //向量数除
    {
        return Vector( A.x / p, A.y / p );
    }
    
    int dcmp( double x )    //控制精度
    {
        if ( fabs(x) < eps ) return 0;
        else return x < 0 ? -1 : 1;
    }
    
    bool operator<( const Point& A, const Point& B )   //两点比较小于
    {
        return dcmp( A.x - B.x) < 0 || ( dcmp(A.x - B.x ) == 0 && dcmp( A.y - B.y ) < 0 );
    }
    
    bool operator>( const Point& A, const Point& B )   //两点比较大于
    {
        return dcmp( A.x - B.x) > 0 || ( dcmp(A.x - B.x ) == 0 && dcmp( A.y - B.y ) > 0 );
    }
    
    bool operator==( const Point& a, const Point& b )   //两点相等
    {
        return dcmp( a.x - b.x ) == 0 && dcmp( a.y - b.y ) == 0;
    }
    
    double Dot( Vector A, Vector B )    //向量点乘
    {
        return A.x * B.x + A.y * B.y;
    }
    
    double Length( Vector A )           //向量模
    {
        return sqrt( Dot( A, A ) );
    }
    
    double Angle( Vector A, Vector B )    //向量夹角
    {
        return acos( Dot(A, B) / Length(A) / Length(B) );
    }
    
    double Cross( Vector A, Vector B )   //向量叉积
    {
        return A.x * B.y - A.y * B.x;
    }
    
    double Area2( Point A, Point B, Point C )    //向量有向面积
    {
        return Cross( B - A, C - A );
    }
    
    Vector Rotate( Vector A, double rad )    //向量旋转
    {
        return Vector( A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad) );
    }
    
    Vector Normal( Vector A )    //向量单位法向量
    {
        double L = Length(A);
        return Vector( -A.y / L, A.x / L );
    }
    
    Point GetLineIntersection( Point P, Vector v, Point Q, Vector w )   //两直线交点
    {
        Vector u = P - Q;
        double t = Cross( w, u ) / Cross( v, w );
        return P + v * t;
    }
    
    double DistanceToLine( Point P, Point A, Point B )    //点到直线的距离
    {
        Vector v1 = B - A, v2 = P - A;
        return fabs( Cross( v1, v2 ) ) / Length(v1);
    }
    
    double DistanceToSegment( Point P, Point A, Point B )   //点到线段的距离
    {
        if ( A == B ) return Length( P - A );
        Vector v1 = B - A, v2 = P - A, v3 = P - B;
        if ( dcmp( Dot(v1, v2) ) < 0 ) return Length(v2);
        else if ( dcmp( Dot(v1, v3) ) > 0 ) return Length(v3);
        else return fabs( Cross( v1, v2 ) ) / Length(v1);
    }
    
    Point GetLineProjection( Point P, Point A, Point B )    // 点在直线上的投影
    {
        Vector v = B - A;
        return A + v*( Dot(v, P - A) / Dot( v, v ) );
    }
    
    bool SegmentProperIntersection( Point a1, Point a2, Point b1, Point b2 )  //线段相交,交点不在端点
    {
        double c1 = Cross( a2 - a1, b1 - a1 ), c2 = Cross( a2 - a1, b2 - a1 ),
               c3 = Cross( b2 - b1, a1 - b1 ), c4 = Cross( b2 - b1, a2 - b1 );
        return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
    }
    
    bool OnSegment( Point p, Point a1, Point a2 )   //点在线段上,不包含端点
    {
        return dcmp( Cross(a1 - p, a2 - p) ) == 0 && dcmp( Dot( a1 - p, a2 - p ) ) < 0;
    }
    
    double toRad( double deg )   //角度转弧度
    {
        return deg / 180.0 * acos( -1.0 );
    }
    
    int ConvexHull( Point *p, int n, Point *ch )    //求凸包,卷包裹法,O(n2)
    {
        sort( p, p + n );
        int m = 0;
        for ( int i = 0; i < n; ++i )
        {
            while ( m > 1 && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m;
            ch[m++] = p[i];
        }
    
        int k = m;
        for ( int i = n - 2; i >= 0; --i )
        {
            while ( m > k && Cross( ch[m - 1] - ch[m - 2], p[i] - ch[m - 2] ) <= 0 ) --m;
            ch[m++] = p[i];
        }
    
        if ( n > 1 ) --m;
        return m;
    }
    
    double PolygonArea( Point *p, int n )   //多边形有向面积
    {
        double area = 0;
        for ( int i = 1; i < n - 1; ++i )
            area += Cross( p[i] - p[0], p[i + 1] - p[0] );
        return area / 2.0;
    }

     graham算法求凸包

    //求凸包,graham算法,O(nlogn),返回凸包点的个数
    int graham( Point *p, int n, Point *ch )
    {
        if ( n <= 2 ) return 0;
        int top = 0;
        sort( p, p + n );
    
        ch[ top ] = p[0];
        ch[ ++top ] = p[1];
        ch[ ++top ] = p[2];
    
        top = 1;
    
        for ( int i = 2; i < n; ++i )
        {
            while ( top && dcmp( Cross( ch[top] - ch[top - 1], p[i] - ch[top - 1] ) ) <= 0 ) --top;
            ch[++top] = p[i];
        }
        int len = top;
        ch[++top] = p[n - 2];
        for ( int i = n - 3; i >= 0; --i )
        {
            while ( top > len && dcmp( Cross( ch[top] - ch[top - 1], p[i] - ch[top - 1] ) ) <= 0 ) --top;
            ch[++top] = p[i];
        }
        return top;
    }

    关于圆的一些模板(不完整,待补充)

    struct Circle
    {
        Point c;   //圆心坐标
        double r;  //半径
        Circle() {}
        Circle( Point c, double r ): c(c), r(r) {}
        Point getPoint( double theta )   //根据极角返回圆上一点的坐标
        {
            return Point( c.x + cos(theta)*r, c.y + sin(theta)*r );
        }
        void readCircle()
        {
            scanf("%lf%lf%lf", &c.x, &c.y, &r );
            return;
        }
    };
    
    //过定点做圆的切线,得到切点,返回切点个数
    //tps保存切点坐标
    int getTangentPoints( Point p, Circle C, Point *tps )
    {
        int cnt = 0;
    
        double dis = sqrt( PointDis( p, C.c ) );
        int aa = dcmp( dis - C.r );
        if ( aa < 0 ) return 0;  //点在圆内
        else if ( aa == 0 ) //点在圆上,该点就是切点
        {
            tps[cnt] = p;
            ++cnt;
            return cnt;
        }
    
        //点在圆外,有两个切点
        double base = atan2( p.y - C.c.y, p.x - C.c.x );
        double ang = acos( C.r / dis );
        //printf( "base = %f ang=%f
    ", base, ang );
        //printf( "base-ang=%f  base+ang=%f 
    ", base - ang, base + ang );
    
        tps[cnt] = C.getPoint( base - ang ), ++cnt;
        tps[cnt] = C.getPoint( base + ang ), ++cnt;
    
        return cnt;
    }
    
    //求两圆外公切线切点,返回切线个数
    //p是圆c2在圆c1上的切点
    int makeCircle( Circle c1, Circle c2, Point *p )
    {
        int cnt = 0;
        double d = sqrt( PointDis(c1.c, c2.c) ), dr = c1.r - c2.r;
        double b = acos(dr / d);
        double a = atan2( c2.c.y - c1.c.y, c2.c.x - c1.c.x );
        double a1 = a - b, a2 = a + b;
        p[cnt++] = Point(cos(a1) * c1.r, sin(a1) * c1.r) + c1.c;
        p[cnt++] = Point(cos(a2) * c1.r, sin(a2) * c1.r) + c1.c;
        return cnt;
    }
    
    //求三角形的外心
    Point GetMid( Point *p )
    {
        Point tmp1 = p[0] + ( p[1] - p[0] ) / 2.0;
        Point tmp2 = p[1] + ( p[2] - p[1] ) / 2.0;
    
        Vector v1 = Normal( p[1] - p[0] );
        Vector v2 = Normal( p[2] - p[1] );
    
        return GetLineIntersection( tmp1, v1, tmp2, v2 );
    }
  • 相关阅读:
    Spark
    升级测试数据迁移数据库版本不兼容的问题:mysql5.7 timestamp默认值0000-00-00 00:00:00 报错
    Redis
    批处理引擎MapReduce
    分布式协调服务ZooKeeper
    分布式列式存储系统Kudu
    Python入门学习笔记9:Python高级语法与用法-枚举、函数式编程<闭包>
    Python入门学习笔记8:正则表达式与JSON
    Python入门学习笔记7:面向对象
    Python入门学习笔记6:函数
  • 原文地址:https://www.cnblogs.com/GBRgbr/p/3139335.html
Copyright © 2020-2023  润新知