• ZOJ 1041 Transmitters


    题意:给你一个能绕圆心转动的半径固定的半圆和N个点,问这个半圆最多能覆盖多少个点,半圆边界上的点也算在覆盖范围内。

    首先把半圆半径之外的点全部排除,枚举剩余所有点与圆心的连线。判断在同一侧的点有多少个。

    之前忽略的边界情况,WA一次。

    View Code
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cstdlib>
     4 #include <cmath>
     5 
     6 const int MAXN = 200;
     7 const double EPS = 1e-9;
     8 
     9 struct point
    10 {
    11     double x, y;
    12 };
    13 
    14 point T;
    15 point P[MAXN];
    16 double R;
    17 int N, cnt;
    18 
    19 int max( int a, int b )
    20 {
    21     return a > b ? a : b;
    22 }
    23 
    24 double GetDis( point a, point b )
    25 {
    26     return sqrt( (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y-b.y) );
    27 }
    28 
    29 void GetLine( point a, point b, double& K, double &B )
    30 {
    31     K = ( a.y - b.y ) / ( a.x - b.x );
    32     B = a.y - K*a.x;
    33     return;
    34 }
    35 
    36 void solved()
    37 {
    38     int ans = 0;
    39     double K, B;
    40     for ( int i = 0; i < cnt; ++i )
    41     {
    42         if ( fabs( P[i].x - T.x ) > EPS )
    43         {
    44             GetLine( T, P[i], K, B );
    45             int count1 = 0;
    46             int count0 = 0;
    47             //printf( "K=%f B=%lf\n", K, B );
    48             for ( int j = 0; j < cnt; ++j )
    49             {
    50                 //printf("y=%f\n", K * P[j].x - P[j].y + B );
    51                 double temp = K * P[j].x - P[j].y + B;
    52                 if ( temp > 0 ) ++count1;
    53                 else if ( fabs( temp ) < EPS ) ++count0;
    54             }
    55             //printf("1=%d 0=%d\n", count1, count0 );
    56             ans = max( ans, max( cnt - count1, count1 + count0 ) );
    57         }
    58         else
    59         {
    60             int count1 = 0;
    61             int count0 = 0;
    62             for ( int j = 0; j < cnt; ++j )
    63             {
    64                 if ( P[j].x - T.x > 0 ) ++count1;
    65                 else if ( fabs( P[j].x - T.x ) < EPS ) ++count0;
    66             }
    67             //printf("**1=%d 0=%d\n", count1, count0 );
    68             ans = max( ans, max( cnt - count1, count1 + count0 ) );
    69         }
    70     }
    71 
    72     printf("%d\n", ans );
    73     return;
    74 }
    75 
    76 int main()
    77 {
    78     while ( ~scanf( "%lf%lf%lf", &T.x, &T.y, &R ) )
    79     {
    80         if ( R < 0 ) break;
    81         scanf( "%d", &N );
    82         cnt = 0;
    83         for ( int i = 0; i < N; ++i )
    84         {
    85             scanf( "%lf%lf", &P[cnt].x, &P[cnt].y );
    86             double temp = GetDis( T, P[cnt] );
    87             if ( temp < R || fabs( temp - R ) < EPS ) ++cnt;
    88         }
    89         //printf("cnt=%d\n", cnt);
    90 
    91         solved();
    92     }
    93     return 0;
    94 }
  • 相关阅读:
    js 获得多个同name 的input输入框的值
    推荐系统
    异常检测
    降维——PCA主成分分析
    无监督学习——降维
    无监督学习——K-means聚类
    支持向量机——内核
    支持向量机背后的数学
    支持向量机——Large Margin Classifier
    支持向量机
  • 原文地址:https://www.cnblogs.com/GBRgbr/p/3052861.html
Copyright © 2020-2023  润新知