相信一万行代码的理论!
讲完了自动化测试的相关内容,接下来开喷性能测试了。首先分享了我的思路:通过一个继承Thread
的基类(虚拟类)来规范一些通用的行为和功能,这一部分比较浅,然后通过两个虚拟类来实现两种不同压测模式(定量压测和定时压测),然后在这两个模式类(虚拟类)的基础上,去实现各种不同需求的多线程测试类。还有一个非常重要的就是执行类,通过多线程类来构造多线程任务,用执行类来执行,完事儿之后计算和保存相关测试数据(包括数据库存储和可视化)。
涉及到一些未很详细的讲解内容,相关文章如下:
- 在讲到多线程基类的时候有个地方翻车了,
errorNum
是基类的属性,但是failNum
是统计多线程任务的执行状态status
,并不是基类属性,而是执行类Concurrent
类的属性。
欢迎各位多提提意见,关注FunTester
交流测试相关。
性能测试框架多线程基类和执行类
gitee地址:https://gitee.com/fanapi/tester
可视化效果图
代码
多线程基类:
package com.fun.base.constaint;
import com.fun.base.interfaces.MarkThread;
import com.fun.frame.SourceCode;
import java.util.List;
import java.util.concurrent.CountDownLatch;
import java.util.stream.Collectors;
/**
* 多线程任务基类,可单独使用
*
* @param <T> 必需实现Serializable
*/
public abstract class ThreadBase<T> extends SourceCode implements Runnable {
public String threadmark;
/**
* 错误数
*/
public int errorNum;
/**
* 执行数,一般与响应时间记录数量相同
*/
public int excuteNum;
/**
* 计数锁
* <p>
* 会在concurrent类里面根据线程数自动设定
* </p>
*/
protected CountDownLatch countDownLatch;
/**
* 标记对象
*/
public MarkThread mark;
/**
* 用于设置访问资源,用于闭包中无法访问包外实例对象的情况
*/
public T t;
protected ThreadBase() {
}
/**
* groovy无法直接访问t,所以写了这个方法,如果报错可以忽略,直接运行,兴许可以成功的
*
* @return
*/
public String getTString() {
return t.toString();
}
/**
* 运行待测方法的之前的准备
*/
protected abstract void before();
/**
* 待测方法
*
* @throws Exception 抛出异常后记录错误次数,一般在性能测试的时候重置重试控制器不再重试
*/
protected abstract void doing() throws Exception;
/**
* 运行待测方法后的处理
*/
protected void after() {
if (countDownLatch != null)
countDownLatch.countDown();
}
/**
* 设置计数器
*
* @param countDownLatch
*/
public void setCountDownLatch(CountDownLatch countDownLatch) {
this.countDownLatch = countDownLatch;
}
/**
* 拷贝对象方法,用于统计单一对象多线程调用时候的请求数和成功数,对于<T>的复杂情况,需要将T类型也重写clone方法
*
* <p>
* 此处若具体实现类而非虚拟类建议自己写clone方法
* </p>
*
* @return
*/
@Override
public ThreadBase clone() {
return deepClone(this);
}
/**
* 线程任务是否需要提前关闭,默认返回false
* <p>
* 一般用于单线程错误率过高的情况
* </p>
*
* @return
*/
public boolean status() {
return false;
}
/**
* Groovy乘法调用方法
*
* @param num
* @return
*/
public List<ThreadBase> multiply(int num) {
return range(num).mapToObj(x -> this.clone()).collect(Collectors.toList());
}
}
执行类:
package com.fun.frame.excute;
import com.fun.base.bean.PerformanceResultBean;
import com.fun.base.constaint.ThreadBase;
import com.fun.config.Constant;
import com.fun.frame.Save;
import com.fun.frame.SourceCode;
import com.fun.utils.Time;
import com.fun.utils.WriteRead;
import org.apache.commons.lang3.ArrayUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.*;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.stream.Collectors;
import static java.util.stream.Collectors.toList;
/**
* 并发类,用于启动压力脚本
*/
public class Concurrent extends SourceCode {
private static Logger logger = LoggerFactory.getLogger(Concurrent.class);
/**
* 开始时间
*/
private long startTime;
/**
* 结束时间
*/
private long endTime;
/**
* 任务描述
*/
public String desc = "FunTester";
/**
* 任务集
*/
public List<ThreadBase> threads = new ArrayList<>();
/**
* 线程数
*/
public int threadNum;
/**
* 执行失败总数
*/
private int errorTotal;
/**
* 任务执行失败总数
*/
private int failTotal;
/**
* 执行总数
*/
private int excuteTotal;
/**
* 用于记录所有请求时间
*/
public static Vector<Long> allTimes = new Vector<>();
/**
* 记录所有markrequest的信息
*/
public static Vector<String> requestMark = new Vector<>();
/**
* 线程池
*/
ExecutorService executorService;
/**
* 计数器
*/
CountDownLatch countDownLatch;
/**
* @param thread 线程任务
* @param threadNum 线程数
*/
public Concurrent(ThreadBase thread, int threadNum) {
this(threadNum);
range(threadNum).forEach(x -> threads.add(thread.clone()));
}
/**
* @param threads 线程组
*/
public Concurrent(List<ThreadBase> threads) {
this(threads.size());
this.threads = threads;
}
/**
* @param thread 线程任务
* @param threadNum 线程数
* @param desc 任务描述
*/
public Concurrent(ThreadBase thread, int threadNum, String desc) {
this(thread, threadNum);
this.desc = desc + Time.getNow();
}
/**
* @param threads 线程组
* @param desc 任务描述
*/
public Concurrent(List<ThreadBase> threads, String desc) {
this(threads);
this.desc = desc + Time.getNow();
}
private Concurrent(int threadNum) {
this.threadNum = threadNum;
executorService = Executors.newFixedThreadPool(threadNum);
countDownLatch = new CountDownLatch(threadNum);
}
private Concurrent() {
}
/**
* 执行多线程任务
*/
public PerformanceResultBean start() {
startTime = Time.getTimeStamp();
for (int i = 0; i < threadNum; i++) {
ThreadBase thread = getThread(i);
thread.setCountDownLatch(countDownLatch);
executorService.execute(thread);
}
shutdownService(executorService, countDownLatch);
endTime = Time.getTimeStamp();
threads.forEach(x -> {
if (x.status()) failTotal++;
errorTotal += x.errorNum;
excuteTotal += x.excuteNum;
});
logger.info("总计{}个线程,共用时:{} s,执行总数:{},错误数:{},失败数:{}", threadNum, Time.getTimeDiffer(startTime, endTime), excuteTotal, errorTotal, failTotal);
return over();
}
/**
* 关闭任务相关资源
*
* @param executorService 线程池
* @param countDownLatch 计数器
*/
private static void shutdownService(ExecutorService executorService, CountDownLatch countDownLatch) {
try {
countDownLatch.await();
executorService.shutdown();
} catch (InterruptedException e) {
logger.warn("线程池关闭失败!", e);
}
}
private PerformanceResultBean over() {
Save.saveLongList(allTimes, threadNum + desc);
Save.saveStringListSync(Concurrent.requestMark, MARK_Path.replace(LONG_Path, EMPTY) + desc);
allTimes = new Vector<>();
requestMark = new Vector<>();
return countQPS(threadNum, desc, Time.getTimeByTimestamp(startTime), Time.getTimeByTimestamp(endTime));
}
ThreadBase getThread(int i) {
return threads.get(i);
}
/**
* 计算结果
* <p>此结果仅供参考</p>
*
* @param name 线程数
*/
public PerformanceResultBean countQPS(int name, String desc, String start, String end) {
List<String> strings = WriteRead.readTxtFileByLine(Constant.LONG_Path + name + desc);
int size = strings.size();
List<Integer> data = strings.stream().map(x -> changeStringToInt(x)).collect(toList());
int sum = data.stream().mapToInt(x -> x).sum();
Collections.sort(data);
String statistics = statistics(data, desc);
double qps = 1000.0 * size * name / sum;
return new PerformanceResultBean(desc, start, end, name, size, sum / size, qps, getPercent(excuteTotal, errorTotal), getPercent(threadNum, failTotal), excuteTotal, statistics);
}
/**
* 将性能测试数据图表展示
*
* <p>
* 将数据排序,然后按照循序分桶,选择桶中中位数作代码,通过二维数组转化成柱状图
* </p>
*
* @param data 性能测试数据,也可以其他统计数据
* @return
*/
public static String statistics(List<Integer> data, String title) {
int size = data.size();
if (size < 1000) return EMPTY;
int[] ints = range(1, BUCKET_SIZE + 1).map(x -> data.get(size * x / BUCKET_SIZE - size / BUCKET_SIZE / 2)).toArray();
int largest = ints[BUCKET_SIZE - 1];
String[][] map = Arrays.asList(ArrayUtils.toObject(ints)).stream().map(x -> getPercent(x, largest, BUCKET_SIZE)).collect(toList()).toArray(new String[BUCKET_SIZE][BUCKET_SIZE]);
String[][] result = new String[BUCKET_SIZE][BUCKET_SIZE];
/*将二维数组反转成竖排*/
for (int i = 0; i < BUCKET_SIZE; i++) {
for (int j = 0; j < BUCKET_SIZE; j++) {
result[i][j] = getManyString(map[j][BUCKET_SIZE - 1 - i], 2) + SPACE_1;
}
}
StringBuffer table = new StringBuffer(LINE + getManyString(TAB, 4) + ((title == null || title.length() == 0) ? DEFAULT_STRING : title) + LINE + LINE + TAB + ">>响应时间分布图,横轴排序分成桶的序号,纵轴每个桶的中位数<<" + LINE + TAB + TAB + "--<中位数数据最小值为:" + ints[0] + " ms,最大值:" + ints[BUCKET_SIZE - 1] + " ms>--" + LINE);
for (int i = 0; i < BUCKET_SIZE; i++) {
table.append(Arrays.asList(result[i]).stream().collect(Collectors.joining()) + LINE);
}
return table.toString();
}
/**
* 用于做后期的计算
*
* @param name
* @param desc
* @return
*/
public PerformanceResultBean countQPS(int name, String desc) {
return countQPS(name, desc, Time.getDate(), Time.getDate());
}
/**
* 后期计算用
*
* @param name
* @return
*/
public PerformanceResultBean countQPS(int name) {
return countQPS(name, EMPTY, Time.getDate(), Time.getDate());
}
/**
* 将数据转化成string数组
*
* @param part 数据
* @param total 基准数据,默认最大的中位数
* @param length
* @return
*/
public static String[] getPercent(int part, int total, int length) {
int i = part * 8 * length / total;
int prefix = i / 8;
int suffix = i % 8;
String s = getManyString(PERCENT[8], prefix) + (prefix == length ? EMPTY : PERCENT[suffix] + getManyString(SPACE_1, length - prefix - 1));
return s.split(EMPTY);
}
}
- 郑重声明:“FunTester”首发,欢迎关注交流,禁止第三方转载。
技术类文章精选
- Linux性能监控软件netdata中文汉化版
- 图解HTTP脑图
- 性能测试中图形化输出测试数据
- JMeter吞吐量误差分析
- 多项目登录互踢测试用例
- 从Java到Groovy的八级进化论
- JMeter如何模拟不同的网络速度
- 6个重要的JVM性能参数