The merchant
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 6864 | Accepted: 2375 |
Description
There are N cities in a country, and there is one and only one simple path between each pair of cities. A merchant has chosen some paths and wants to earn as much money as possible in each path. When he move along a path, he can choose one city to buy some goods and sell them in a city after it. The goods in all cities are the same but the prices are different. Now your task is to calculate the maximum possible profit on each path.
Input
The first line contains N, the number of cities.
Each of the next N lines contains wi the goods' price in each city.
Each of the next N-1 lines contains labels of two cities, describing a road between the two cities.
The next line contains Q, the number of paths.
Each of the next Q lines contains labels of two cities, describing a path. The cities are numbered from 1 to N.
1 ≤ N, wi, Q ≤ 50000
Output
The output contains Q lines, each contains the maximum profit of the corresponding path. If no positive profit can be earned, output 0 instead.
Sample Input
4 1 5 3 2 1 3 3 2 3 4 9 1 2 1 3 1 4 2 3 2 1 2 4 3 1 3 2 3 4
Sample Output
4 2 2 0 0 0 0 2 0
Source
题意
给出一棵树,每个节点有一个点权,代表商品的价值
从节点u->v的路径上,有一个商人从一个节点购买商品,并在另一个节点卖出,问商人可以获得的最大利润是多少
思路
商人进行买卖一共有三种情况:
- 在点u->lca(u,v)的路上买,lca(u,v)->v的路上卖
- 在u->lca(u,v)的路上完成买卖
- 在lca(u,v)->v的路上完成买卖
所以我们可以引入四个数组:up,down,maxx,minn。分别代表:在u->lca(u,v)的路上完成买卖的最大获利;在lca(u,v)->v的路上完成买卖的最大获利;lca(u,v)->v点出售的最大利润;u->lca(u,v)购买的最少花费
我们可以得到商人的最大收益=max(max(up[u],down[v]),maxx[v]-minn[u])
问题就变成了去寻找lca(u,v),并更新数组的值。以上四个数组的值可以在并查集find函数中进行更新
代码
1 #include <iostream> 2 #include <algorithm> 3 #include <cstring> 4 #define ll long long 5 #define ull unsigned long long 6 #define ms(a,b) memset(a,b,sizeof(a)) 7 const int inf=0x3f3f3f3f; 8 const ll INF=0x3f3f3f3f3f3f3f3f; 9 const int maxn=1e6+10; 10 const int mod=1e9+7; 11 const int maxm=1e3+10; 12 using namespace std; 13 int maxx[maxn],minn[maxn]; 14 int up[maxn],down[maxn]; 15 int f[maxn]; 16 // minn[u] u->lca(u,v)买的最小值 17 // maxx[v] lca(u,v)->v卖的最大值 18 // up[u] u->lca(u,v)进行买卖的最大值 19 // down[v] lca(u,v)->v进行买卖的最大值 20 int find(int x) 21 { 22 if(f[x]==x) 23 return x; 24 int y=f[x]; 25 f[x]=find(f[x]); 26 up[x]=max(max(up[y],up[x]),maxx[y]-minn[x]); 27 down[x]=max(max(down[y],down[x]),maxx[x]-minn[y]); 28 maxx[x]=max(maxx[x],maxx[y]); 29 minn[x]=min(minn[x],minn[y]); 30 return f[x]; 31 } 32 void join(int x,int y) 33 { 34 int dx=f[x],dy=f[y]; 35 if(dx!=dy) 36 f[y]=dx; 37 } 38 struct Edge 39 { 40 int to,Next; 41 }edge[maxn]; 42 int head1[maxn]; 43 int tot1; 44 void add_edge(int u,int v) 45 { 46 edge[tot1].to=v; 47 edge[tot1].Next=head1[u]; 48 head1[u]=tot1++; 49 } 50 struct Query 51 { 52 int to,Next; 53 int index; 54 }query[maxn]; 55 int head2[maxn]; 56 int tot2; 57 void add_query(int u,int v,int index) 58 { 59 query[tot2].to=v; 60 query[tot2].Next=head2[u]; 61 query[tot2].index=index; 62 head2[u]=tot2++; 63 } 64 struct Pos 65 { 66 int to,Next; 67 int index; 68 }pos[maxn]; 69 int head3[maxn]; 70 int tot3; 71 void add_pos(int u,int v,int index) 72 { 73 pos[tot3].to=v; 74 pos[tot3].Next=head3[u]; 75 pos[tot3].index=index; 76 head3[u]=tot3++; 77 } 78 int vis[maxn]; 79 int qu[maxn],qv[maxn]; 80 int fa[maxn]; 81 int ans[maxn]; 82 void LCA(int u) 83 { 84 fa[u]=u; 85 vis[u]=1; 86 for(int i=head1[u];~i;i=edge[i].Next) 87 { 88 int v=edge[i].to; 89 if(vis[v]) 90 continue; 91 LCA(v); 92 join(u,v); 93 fa[find(u)]=u; 94 } 95 for(int i=head2[u];~i;i=query[i].Next) 96 { 97 int v=query[i].to; 98 if(vis[v]) 99 { 100 int t=fa[find(v)]; 101 // 储存lca(u,v)的子节点 102 add_pos(t,v,query[i].index); 103 } 104 } 105 for(int i=head3[u];~i;i=pos[i].Next) 106 { 107 int id=pos[i].index; 108 int xx=qu[id],yy=qv[id]; 109 // 更新四个数组的值 110 find(xx);find(yy); 111 ans[id]=max(max(up[xx],down[yy]),maxx[yy]-minn[xx]); 112 } 113 } 114 int value[maxn]; 115 void init(int n) 116 { 117 tot1=0;tot2=0;tot3=0; 118 for(int i=1;i<=n;i++) 119 f[i]=i; 120 ms(fa,0);ms(vis,0); 121 ms(head1,-1);ms(head2,-1);ms(head3,-1); 122 } 123 int main(int argc, char const *argv[]) 124 { 125 #ifndef ONLINE_JUDGE 126 freopen("/home/wzy/in.txt", "r", stdin); 127 freopen("/home/wzy/out.txt", "w", stdout); 128 srand((unsigned int)time(NULL)); 129 #endif 130 ios::sync_with_stdio(false); 131 cin.tie(0); 132 int n; 133 cin>>n; 134 init(n); 135 for(int i=1;i<=n;i++) 136 cin>>value[i],minn[i]=value[i],maxx[i]=value[i]; 137 int u,v; 138 for(int i=1;i<n;i++) 139 cin>>u>>v,add_edge(u,v),add_edge(v,u); 140 int q; 141 cin>>q; 142 for(int i=0;i<q;i++) 143 cin>>qu[i]>>qv[i],add_query(qu[i],qv[i],i),add_query(qv[i],qu[i],i); 144 LCA(1); 145 for(int i=0;i<q;i++) 146 cout<<ans[i]<<" "; 147 #ifndef ONLINE_JUDGE 148 cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl; 149 #endif 150 return 0; 151 }