使用kNN算法进行分类的原理是:从训练集中选出离待分类点最近的个点,在这个点中所占比重最大的分类即为该点所在的分类。通常不超过
kNN算法步骤:
- 计算数据集中的点与待分类点之间的距离
- 按照距离升序排序
- 选出距离最小的个点
- 计算这个点所在类别出现的频率(次数)
- 返回出现频率最高的点的类别
代码的实现:
首先导入numpy
模块和operator
模块,建立一个数据集
from numpy import *
import operator
def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels
kNN算法的核心代码
# inX-用于分类的输入向量;dataSet-训练样本集;labels-标签向量;k-选择最近邻居的个数
# 实现kNN算法
def classify0(inX, dataSet, labels, k):
# shape返回各个维度的维数,shape[0]表示最外围的数组的维数,shape[1]表示次外围的数组的维数,数字不断增大,维数由外到内。
# 例如:二维数组中,shape[0]表示行数,shape[1]表示列数
dataSetSize = dataSet.shape[0]
# tile([n1,n2](a,b))表示在行的方向上重复[n1,n2]a次,在列的方向上重复b次
# 两个矩阵大小相同的矩阵相减
diffMat = tile(inX, (dataSetSize, 1)) - dataSet
# 对应位置的元素直接相乘
# 如果需要矩阵乘法,使用dot(a,b)
sqDiffMat = diffMat ** 2
# sum(axis=1)表示按行(第二维度)相加,axis=0表示按列(第一维度)相加
# 此处得到inX到dataSet各点的距离的平方
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances ** 0.5
# 升序排序后返回其下标
sortedDistIndicies = distances.argsort()
classCound = {}
for i in range(k):
# 当前点的标签
voteIlabel = labels[sortedDistIndicies[i]]
# 将点的标签数+1
classCound[voteIlabel] = classCound.get(voteIlabel, 0) + 1
# 将字典分解成元组列表,并按照第二个元素进行降序排序
sortedClassCount = sorted(classCound.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
使用K-近邻算法改进约会网站的配对效果
数据集的处理
首先我们需要处理数据集,将其转换成训练样本矩阵和类标签向量
约会网站的数据集对应的文件名是datingTestSet2.txt
,每列对应的标签分别是:每年获得的飞行常客里程数;玩视频游戏所耗时间百分比;每周消费的冰淇淋公升数;属于哪一类型的人
# 将文本记录转换成Numpy的解析程序
def file2matrix(filename):
fr = open(filename)
arrar0Lines = fr.readlines()
# 获得文件行数
number0fLines = len(arrar0Lines)
# 创建一个number0fLines行3列的全是0的矩阵
retrunMat = zeros((number0fLines, 3))
classLabelVector = []
index = 0
for line in arrar0Lines:
line = line.strip()
listFromLine = line.split(' ')
# 选取每行的前三个元素放入returnMat中
retrunMat[index, :] = listFromLine[0:3]
# 将所属类别放入classLabelVector
classLabelVector.append(int(listFromLine[-1]))
index += 1
return retrunMat, classLabelVector
使用Matplotlib创建散点图
在命令行环境中,输入:
import kNN
from numpy import *
import matplotlib
import matplotlib.pyplot as plt
datingDataMat,datingLabels=kNN.file2matrix('datingTestSet2.txt')
# 创建一个画布
fig=plt.figure()
# 111的含义是将画布分割成1行1列,画像在从左到右,从上到下第一块
ax=fig.add_subplot(111)
# 以第二列和第三列为x,y轴画出散列点,给予不同的颜色和大小
# scatter(x,y,s=1,c="g",marker="s",linewidths=0)
# s:散列点的大小,c:散列点的颜色,marker:形状,linewidths:边框宽度
ax.scatter(datingDataMat[:,1],datingDataMat[:,2],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show()
此时,可以得到数据集的散点图:(横坐标是玩视频游戏所耗时间百分比
,纵坐标是每周消费的冰淇淋公升数
)
归一化数据
可以看出,在计算点的距离时,里程数对于距离的影响特别大,为了减小这个影响,需要将所有的数据范围处理到到或到之间,利用下面的公式,可以实现将特征值转化为区间内的值:
代码如下:
# 归一化特征值
def autoNorm(dataSet)
# 按列查找最大值和最小值
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
# 创建一个和dataSet大小相同的全是0的数组
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
# 获得值为oldValue-min的数组
normDataSet = dataSet - tile(minVals, (m, 1))
# 归一化的数组
normDataSet = normDataSet / tile(ranges, (m, 1))
return normDataSet, ranges, minVals
分类器针对约会网站的测试代码
使用数据集中的的数据作为测试数据,剩余的作为数据集
# 对于数据的测试
# 选出10%作为测试数据,剩余90%作为数据集
def datingClassTest():
hoRatio = 0.10
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
# 获得测试数据的组数
numTestVecs = int(m * hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
print("the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]))
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print("the total error rate is: %f" % (errorCount / float(numTestVecs)))
约会网站预测函数
def classifyPerson():
resultList = ['not at all', 'in small doses', 'in large doses']
percentTats = float(input("percentage of time spent palying video games?"))
ffMiles = float(input("fregunt flier miles earned per year?"))
iceCream = float(input("liters of ice cream consumed per year?"))
datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr - minVals) / ranges, normMat, datingLabels, 3)
print("You will probably like this person: ", resultList[classifierResult - 1])