time limit per test: 1 second
memory limit per test: 256 megabytes
input: standard input
output: standard output
Ayoub had an array of integers of size and this array had two interesting properties:
- All the integers in the array were between and (inclusive).
- The sum of all the elements was divisible by .
Unfortunately, Ayoub has lost his array, but he remembers the size of the array and the numbers and , so he asked you to find the number of ways to restore the array.
Since the answer could be very large, print it modulo (i.e. the remainder when dividing by ). In case there are no satisfying arrays (Ayoub has a wrong memory), print .
Input
The first and only line contains three integers , and — the size of the lost array and the range of numbers in the array.
Output
Print the remainder when dividing by the number of ways to restore the array.
Examples
input
2 1 3
output
3
input
3 2 2
output
1
input
9 9 99
output
711426616
Note
In the first example, the possible arrays are : .
In the second example, the only possible array is .
题意
给出三个整数,要求在之间的数组成的长度为的序列的和能够整除
AC代码
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#include <time.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
#define pi acos(-1.0)
#define INF 0x7f7f7f7f
#define lson o<<1
#define rson o<<1|1
#define bug cout<<"-------------"<<endl
#define debug(...) cerr<<"["<<#__VA_ARGS__":"<<(__VA_ARGS__)<<"]"<<"
"
const double E=exp(1);
const int maxn=1e6+10;
const int mod=1e9+7;
using namespace std;
ll dp[3][maxn];
int n, l, r, t ;
int main(int argc, char const *argv[])
{
ios::sync_with_stdio(false);
cin>>n>>l>>r;
int num0,num1,num2;//余数为i的个数
num0=r/3-(l-1)/3;
num1=r/3+(r%3>=2)-(l-1)/3-((l-1)%3>=2);
num2=r-l+1-num0-num1;
dp[0][1]=num0;
dp[1][1]=num1;
dp[2][1]=num2;
for(int i=2;i<=n;i++)
{
dp[0][i]=((dp[0][i-1]%mod*(num0%mod))%mod+(dp[1][i-1]%mod*num2%mod)%mod+(dp[2][i-1]%mod*num1%mod)%mod)%mod;
dp[1][i]=((dp[0][i-1]%mod*(num1%mod))%mod+(dp[1][i-1]%mod*num0%mod)%mod+(dp[2][i-1]%mod*num2%mod)%mod)%mod;
dp[2][i]=((dp[0][i-1]%mod*(num2%mod))%mod+(dp[1][i-1]%mod*num1%mod)%mod+(dp[2][i-1]%mod*num0%mod)%mod)%mod;
}
cout<<dp[0][n]%mod<<endl;
return 0;
}