• 二叉树


    满二叉树定义 ,这个可以认为是特殊的 完全二叉树

    除最后一层无任何子节点外,每一层上的所有结点都有两个子结点二叉树。
    国内教程定义:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是(2^k) -1 ,则它就是满二叉树。
    大意为:如果一棵二叉树的结点要么是叶子结点,要么它有两个子结点,这样的树就是满二叉树。(一棵满二叉树的每一个结点要么是叶子结点,要么它有两个子结点,但是反过来不成立,因为完全二叉树也满足这个要求,但不是满二叉树)
    

    完全二叉树定义, 相比 满二叉树定义 稍微 松一点

    若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中在最左边,这就是完全二叉树。
    
    完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。
    
    算法思路
    判断一棵树是否是完全二叉树的思路
    1>如果树为空,则直接返回错
      2>如果树不为空:层序遍历二叉树
      2.1>如果一个结点左右孩子都不为空,则pop该节点,将其左右孩子入队列;
      2.1>如果遇到一个结点,左孩子为空,右孩子不为空,则该树一定不是完全二叉树;
      2.2>如果遇到一个结点,左孩子不为空,右孩子为空;或者左右孩子都为空;则该节点之后的队列中的结点都为叶子节点;该树才是完全二叉树,否则就不是完全二叉树
    

    完全二叉树的 应用举例 最大堆 ,最小堆 ==》 堆排序 , 好了 看来我不适合写算法,脑仁疼。。。

    package com.ghc.starter.algorithm;
    /*
    这是一个排序算法集合的工具类
    * */
    public class SortUtils {
        public static int [] array = {10,9,3,2,4,6,5,7,8};
    
        // 完全二叉树 --》最大堆--》堆排序
        public static void main(String [] args){
            printArray(array);
            buildMaxHeap(array,array.length);
            printArray(array);
            heapSort(array);
            printArray(array);
        }
    
        // 有格式的打印数组
        public static void printArray(int [] array){
            System.out.print("[");
            for(int i=0;i<array.length;i++){
                if(i!=array.length-1)
                System.out.print(array[i]+",");
                else System.out.println(array[i]+"]");
            }
        }
        // 堆排序 基于 下面 构建 最大堆
        public static void heapSort(int [] array){
            // 如果 数组只有一个元素或者为空则不用排序
            if(array==null || array.length<=1) return;
            // 否则开始 堆排序
            // 先 构建一个 最大堆
            buildMaxHeap(array,array.length);
            for(int i=array.length-1;i>0;i--){
                // 交换 堆顶与 最后位置的值,下一次 跳过 已经排好序的 位置
                swap(array,0,i);
                // 递归 重复构建 跳过 排好序的位置后的 最大堆
                buildMaxHeap(array,i);
            }
        }
        // 根据传入的 数组 构建一个 最大堆 ,最大堆只能保证堆顶是最大值,那么堆排序就是每次取最值后然后调整堆为最大堆
        public static void buildMaxHeap(int [] array,int heapSize){
            // 从 总节点数的 1/2 之一处开始 逆序 调整 最大堆
            for(int i=heapSize/2;i>0;i--){
                maxHeapify(array,heapSize,i);
            }
        }
        public static void maxHeapify(int [] array,int heapSize,int rootIndex){
            //左叶子结点
            int l = 2*rootIndex;
            // 右叶子结点
            int r = l+1;
            // 调整需要的最大值指向
            int largest = rootIndex;
            //如果 左叶子结点比父节点要大 ,那么修改 largest 指向为 l
            if(l<=heapSize && array[l-1]>array[rootIndex-1]){
                largest = l;
            }
            //如果 右叶子结点比父节点要大 ,那么修改 largest 指向为 r
            if(r<=heapSize && array[r-1]>array[largest-1]){
                largest = r;
            }
            // 如果 最大值不是 父节点,那么交换 最大值指向与父节点的位置
            if(largest!=rootIndex){
                swap(array,largest-1,rootIndex-1);
                if(largest<=heapSize/2){
                    maxHeapify(array,heapSize,largest);
                }
            }
    
        }
        // 交换 数组中的值
        public static void swap(int [] array,int i,int j){
            int temp = array[i];
            array[i] = array[j];
            array[j] = temp;
        }
    }
    
    

    二叉搜索树

    AVL 平衡树

    红黑树

    如果有来生,一个人去远行,看不同的风景,感受生命的活力。。。
  • 相关阅读:
    网页布局色块
    多物体运动
    elasticsearch基础命令
    mysiam,innodb
    git常用命令
    redis内存淘汰机制
    PHP运行模式
    MySQL主从延迟
    ip、uv、pv
    缓存出现的几种情况
  • 原文地址:https://www.cnblogs.com/Frank99/p/10025154.html
Copyright © 2020-2023  润新知