题目描述
“低价购买”这条建议是在奶牛股票市场取得成功的一半规则。要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买;再低价购买”。每次你购买一支股票,你必须用低于你上次购买它的价格购买它。买的次数越多越好!你的目标是在遵循以上建议的前提下,求你最多能购买股票的次数。你将被给出一段时间内一支股票每天的出售价((2^{16})范围内的正整数),你可以选择在哪些天购买这支股票。每次购买都必须遵循“低价购买;再低价购买”的原则。写一个程序计算最大购买次数。
这里是某支股票的价格清单:
日期 (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8, 9 ,10 ,11, 12)
价格 (68 ,69 ,54, 64,68 ,64 ,70 ,67 ,78 ,62, 98, 87)
最优秀的投资者可以购买最多44次股票,可行方案中的一种是:
日期 (2 , 5 , 6 ,10)
价格 (69, 68 ,64 ,62)输入格式
第1行: (N(1 le N le 5000)),股票发行天数
第2行: NN个数,是每天的股票价格。输出格式
两个数:
最大购买次数和拥有最大购买次数的方案数($ le 2^{31}$)当二种方案“看起来一样”时(就是说它们构成的价格队列一样的时候),这(2)种方案被认为是相同的。
学到了一种统计方案数的方法。
(f[i] = sumlimits_{dp_i = dp_j + 1且price_j>price_i}{f[j]})
(sigma怎么写......)
剩下就是一个最长下降子序列。
#include<bits/stdc++.h>
using namespace std;
long long price[6000];
long long dp[6000],dp2[6000];
long long n;
int main(){
cin >> n;
for(int i = 1; i <= n; i++){
cin >> price[i];
dp[i] = 1;
}
for(int i = 2; i <= n; i++){
long long maxn = 0;
for(int j = 1; j < i; j++){
if(price[j] > price[i])
dp[i] = max(dp[i],dp[j] + 1);
}
}
for(int i = 1; i <= n; i++){
if(dp[i] == 1) dp2[i] = 1;
for(int j = 1; j < i; j++){
if(dp[i] == dp[j] + 1 && price[i] < price[j]) dp2[i] += dp2[j];
else if(dp[i] == dp[j] && price[i] == price[j]) dp2[i] = 0;
}
}
long long ans1 = 0,ans2 = 0;
for(int i = 1; i <= n; i++)
if(ans1 < dp[i]) ans1 = dp[i];
for(int i = 1; i <= n; i++)
if(dp[i] == ans1) ans2 += dp2[i];
cout << ans1 << " " << ans2 << endl;
return 0;
}