// begin {AC auto machine}
const int MAXN_NODE = 5e5 + 7;
const int MAXN_CHAR = 128;
int ch[MAXN_NODE][MAXN_CHAR], fail[MAXN_NODE], val[MAXN_NODE],
last[MAXN_NODE], sz;
inline int idx(char c) {return (int)c;}
void insert(char *s, int v) {
int u = 0, n = strlen(s);
for(int i = 0; i < n; ++i) {
int c = idx(s[i]);
if(!ch[u][c]) {
memset(ch[sz], 0, sizeof(ch[sz]));
//val[sz] = 0;
ch[u][c] = sz++;
}
u = ch[u][c];
}
val[u] = v;
}
std::queue<int>q;
void get_fail() {
fail[0] = 0;
for(int c = 0; c < MAXN_CHAR; ++c) {
int u = ch[0][c];
if(u) {fail[u] = 0; q.push(u), last[u] = 0;}
}
// BFS
while(!q.empty()) {
int r = q.front(); q.pop();
for(int c = 0; c < MAXN_CHAR; ++c) {
int u = ch[r][c];
if(!u) {ch[r][c] = ch[fail[r]][c]; continue;}
q.push(u);
int v = fail[r];
while(v && !ch[v][c]) v = fail[v];
fail[u] = ch[v][c];
last[u] = val[fail[u]] ? fail[u] : last[fail[u]];
}
}
}
void print(int j) {
if(j) {
//printf("%d:%d
",j,val[j]);
print(last[j]);
ans[val[j]] ++;
}
}
void find(char *T) {
int n = strlen(T), j = 0;
for(int i = 0; i < n; ++i) {
int c = idx(T[i]);
j = ch[j][c];
if(val[j]) print(j);
else if(last[j]) print(last[j]);
}
}
void init() {
sz = 1;
memset(ch[0], 0, sizeof(ch[0]));
memset(val, 0, sizeof(val));
}
// end {AC auto machine}
下面代码针对频繁调用 print 进行了优化,没有立即沿suffix link 更新,而是最后自底向根root更新统计值
// begin {ac-automation}
const int MAXN = 3e5 + 7;
const int SIGMA_SIZE = 26;
struct ac_automation {
struct node {int next[SIGMA_SIZE], fail, val;};
node nod[MAXN];
int length, pos[MAXN], st[MAXN], top;
inline void init() {
length = top = 0; newNode();
}
inline int newNode() {
node &p = nod[length];
p.val = p.fail = 0;
memset(p.next, 0, SIGMA_SIZE * 4);
return length++;
}
inline int idx(char c) {return c - 'a';}
void insert(char *s, int id) {
int cur = 0, k ;
for(; *s; ++s) {
k = idx(s[0]);
node &p = nod[cur];
if(!p.next[k]) p.next[k] = newNode();
cur = p.next[k];
}
pos[id] = cur;
}
std::queue<int>Q;
void get_fail() {
int cur = 0;
for(register int i = 0; i < SIGMA_SIZE; ++i) {
node &p = nod[cur];
if(p.next[i]) Q.push(p.next[i]);
}
while(!Q.empty()) {
cur = Q.front(); Q.pop();
for(int i = 0; i < SIGMA_SIZE; ++i) {
node &p = nod[cur];
if(p.next[i]) {
int &e = p.next[i], &j = p.fail;
nod[e].fail = nod[j].next[i];
Q.push(e);
st[++top] = e;
} else p.next[i] = nod[p.fail].next[i];
}
}
}
void find(char *s) {
int now = 0;
for(; *s; ++s) {
int k = idx(s[0]);
now = nod[now].next[k];
nod[now].val ++;
}
int tmp = top, p;
while(tmp) {
p = st[tmp];
nod[nod[p].fail].val += nod[p].val;
tmp --;
}
}
};
// end {ac-automation}
LightOJ 1427 Substring Frequency (II)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1427
给出的模板串会有重复,记录每个串在 (Trie) 中的位置 pos , (Trie) 中节点统计有次数 (val) 输出即可
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <queue>
// begin {ac-automation}
const int MAXN = 3e5 + 7;
const int SIGMA_SIZE = 26;
struct ac_automation {
struct node {int next[SIGMA_SIZE], fail, val;};
node nod[MAXN];
int length, pos[MAXN], st[MAXN], top;
inline void init() {
length = top = 0; newNode();
}
inline int newNode() {
node &p = nod[length];
p.val = p.fail = 0;
memset(p.next, 0, sizeof(p.next));
return length++;
}
inline int idx(char c) {return c - 'a';}
void insert(char *s, int id) {
int cur = 0, k ;
for(; *s; ++s) {
k = idx(s[0]);
node &p = nod[cur];
if(!p.next[k]) p.next[k] = newNode();
cur = p.next[k];
}
pos[id] = cur;
}
std::queue<int>Q;
void get_fail() {
int cur = 0;
for(register int i = 0; i < SIGMA_SIZE; ++i) {
node &p = nod[cur];
if(p.next[i]) Q.push(p.next[i]);
}
while(!Q.empty()) {
cur = Q.front(); Q.pop();
for(int i = 0; i < SIGMA_SIZE; ++i) {
node &p = nod[cur];
if(p.next[i]) {
int &e = p.next[i], &j = p.fail;
nod[e].fail = nod[j].next[i];
Q.push(e);
st[++top] = e;
} else p.next[i] = nod[p.fail].next[i];
}
}
}
void find(char *s) {
int now = 0;
for(; *s; ++s) {
int k = idx(s[0]);
now = nod[now].next[k];
nod[now].val ++;
}
int tmp = top, p;
while(tmp) {
p = st[tmp];
nod[nod[p].fail].val += nod[p].val;
tmp --;
}
}
};
// end {ac-automation}
ac_automation ac;
const int MAX_t = 1e6 + 7;
char t[MAX_t], s[500 + 7];
int main() {
int T, n; scanf("%d", &T);
for(int i = 0; i < T; ++i) {
ac.init();
scanf("%d", &n); getchar();
gets(t);
for(int j = 0; j < n; ++j) {
gets(s); ac.insert(s, j + 1);
}
ac.get_fail();
ac.find(t);
printf("Case %d:
", i + 1);
for(int j = 0; j < n; ++j)
printf("%d
", ac.nod[ac.pos[j + 1]].val);
}
return 0;
}
HDU-2896 病毒侵袭
#include <stdio.h>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <queue>
std::bitset<500+7>vis;
// begin{Ac_Automation}
const int max_node = 5e5 + 7;
const int sigma_size = 128;
int ch[max_node][sigma_size], val[max_node], sz;
int fail[max_node], last[max_node];
inline int idx(char c) {return (int)c;}
void insert(char *s, int v = 1) {
int u = 0, n = strlen(s);
for(int i = 0; i < n; ++i) {
int c = idx(s[i]);
if(!ch[u][c]) {
memset(ch[sz], 0, sizeof(ch[sz]));
//val[sz] = 0;
ch[u][c] = sz++;
}
u = ch[u][c];
}
val[u] = v;
}
std::queue<int>q;
void get_fail() {
fail[0] = 0;
for(int c = 0; c < sigma_size; ++c) {
int u = ch[0][c];
if(u) {fail[u] = 0; q.push(u), last[u] = 0;}
}
// BFS
while(!q.empty()) {
int r = q.front(); q.pop();
for(int c = 0; c < sigma_size; ++c) {
int u = ch[r][c];
if(!u) {ch[r][c] = ch[fail[r]][c]; continue;}
q.push(u);
int v = fail[r];
while(v && !ch[v][c]) v = fail[v];
fail[u] = ch[v][c];
last[u] = val[fail[u]] ? fail[u] : last[fail[u]];
}
}
}
void print(int j) {
if(j) {
//printf("%d:%d
",j,val[j]);
print(last[j]);
vis[val[j]] = true;;
}
}
void find(char *T) {
int n = strlen(T), j = 0;
for(int i = 0; i < n; ++i) {
int c = idx(T[i]);
j = ch[j][c];
if(val[j]) print(j);
else if(last[j]) print(last[j]);
}
}
void init() {
sz = 1;
memset(ch[0], 0, sizeof(ch[0]));
memset(val, 0, sizeof(val));
}
// end{Ac_Automation}
char s[10000007];
void solve() {
init();
int n; scanf("%d", &n); getchar();
for(int i = 0; i < n; i++) {gets(s); insert(s, i + 1);}
get_fail();
int ret = 0; scanf("%d", &n); getchar();
for(int i = 0; i < n; ++i) {
gets(s);vis.reset();find(s);
if(vis.any()) {
printf("web %d:", i + 1); ret++;
for(int j = 0; j < 500; ++j) {
if(vis[j+1]) printf(" %d", j+1);
}
puts("");
}
}
printf("total: %d
", ret);
}
int main() {solve(); return 0;}
POJ - 2778 DNA Sequence
#pragma comment(linker, "/STACK:36777216")
//#pragma GCC optimize ("O2")
#define LOCAL
//#include "testlib.h"
#include <functional>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <sstream>
#include <iomanip>
#include <numeric>
#include <cstring>
#include <climits>
#include <cassert>
#include <complex>
#include <cstdio>
#include <string>
#include <vector>
#include <bitset>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <list>
#include <set>
#include <map>
//#include <tr1/unordered_set>
//#include <tr1/unordered_map>
//#include <array>
using namespace std;
#define REP(i, n) for (int i=0;i<n;++i)
#define FOR(i, a, b) for (int i=a;i<b;++i)
#define DWN(i, b, a) for (int i=b-1;i>=a;--i)
#define REP_1(i, n) for (int i=1;i<=n;++i)
#define FOR_1(i, a, b) for (int i=a;i<=b;++i)
#define DWN_1(i, b, a) for (int i=b;i>=a;--i)
#define REP_C(i, n) for (int n____=n,i=0;i<n____;++i)
#define FOR_C(i, a, b) for (int b____=b,i=a;i<b____;++i)
#define DWN_C(i, b, a) for (int a____=a,i=b-1;i>=a____;--i)
#define REP_N(i, n) for (i=0;i<n;++i)
#define FOR_N(i, a, b) for (i=a;i<b;++i)
#define DWN_N(i, b, a) for (i=b-1;i>=a;--i)
#define REP_1_C(i, n) for (int n____=n,i=1;i<=n____;++i)
#define FOR_1_C(i, a, b) for (int b____=b,i=a;i<=b____;++i)
#define DWN_1_C(i, b, a) for (int a____=a,i=b;i>=a____;--i)
#define REP_1_N(i, n) for (i=1;i<=n;++i)
#define FOR_1_N(i, a, b) for (i=a;i<=b;++i)
#define DWN_1_N(i, b, a) for (i=b;i>=a;--i)
#define REP_C_N(i, n) for (int n____=(i=0,n);i<n____;++i)
#define FOR_C_N(i, a, b) for (int b____=(i=0,b);i<b____;++i)
#define DWN_C_N(i, b, a) for (int a____=(i=b-1,a);i>=a____;--i)
#define REP_1_C_N(i, n) for (int n____=(i=1,n);i<=n____;++i)
#define FOR_1_C_N(i, a, b) for (int b____=(i=a,b);i<=b____;++i)
#define DWN_1_C_N(i, b, a) for (int a____=(i=b,a);i>=a____;--i)
#define ECH(it, A) for (__typeof((A).begin()) it=(A).begin(); it != (A).end(); ++it)
#define rECH(it, A) for (__typeof((A).rbegin()) it=(A).rbegin(); it != (A).rend(); ++it)
#define REP_S(i, str) for (char*i=str;*i;++i)
#define REP_L(i, hd, suc) for (int i=hd;i;i=suc[i])
#define REP_G(i, u) REP_L(i,hd[u],suc)
#define REP_SS(x, s) for (int x=s;x;x=(x-1)&s)
#define DO(n) for ( int ____n = n; ____n-->0; )
#define REP_2(i, j, n, m) REP(i, n) REP(j, m)
#define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m)
#define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l)
#define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l)
#define REP_4(i, j, k, ii, n, m, l, nn) REP(i, n) REP(j, m) REP(k, l) REP(ii, nn)
#define REP_4_1(i, j, k, ii, n, m, l, nn) REP_1(i, n) REP_1(j, m) REP_1(k, l) REP_1(ii, nn)
#define ALL(A) A.begin(), A.end()
#define LLA(A) A.rbegin(), A.rend()
#define CPY(A, B) memcpy(A, B, sizeof(A))
#define INS(A, P, B) A.insert(A.begin() + P, B)
#define ERS(A, P) A.erase(A.begin() + P)
#define LBD(A, x) (lower_bound(ALL(A), x) - A.begin())
#define UBD(A, x) (upper_bound(ALL(A), x) - A.begin())
#define CTN(T, x) (T.find(x) != T.end())
#define SZ(A) int((A).size())
#define PB push_back
#define MP(A, B) make_pair(A, B)
#define PTT pair<T, T>
#define Ts *this
#define rTs return Ts
#define fi first
#define se second
#define re real()
#define im imag()
#define Rush for(int ____T=int(RD()); ____T--;)
#define Display(A, n, m) {
REP(i, n){
REP(j, m-1) cout << A[i][j] << " ";
cout << A[i][m-1] << endl;
}
}
#define Display_1(A, n, m) {
REP_1(i, n){
REP_1(j, m-1) cout << A[i][j] << " ";
cout << A[i][m] << endl;
}
}
typedef long long LL;
//typedef long double DB;
typedef double DB;
typedef unsigned uint;
typedef unsigned long long ULL;
typedef vector<int> VI;
typedef vector<char> VC;
typedef vector<string> VS;
typedef vector<LL> VL;
typedef vector<DB> VF;
typedef set<int> SI;
typedef set<string> SS;
typedef map<int, int> MII;
typedef map<string, int> MSI;
typedef pair<int, int> PII;
typedef pair<LL, LL> PLL;
typedef vector<PII> VII;
typedef vector<VI> VVI;
typedef vector<VII> VVII;
template<class T> inline T& RD(T &);
template<class T> inline void OT(const T &);
//inline int RD(){int x; return RD(x);}
inline LL RD() {LL x; return RD(x);}
inline DB& RF(DB &);
inline DB RF() {DB x; return RF(x);}
inline char* RS(char *s);
inline char& RC(char &c);
inline char RC();
inline char& RC(char &c) {scanf(" %c", &c); return c;}
inline char RC() {char c; return RC(c);}
//inline char& RC(char &c){c = getchar(); return c;}
//inline char RC(){return getchar();}
template<class T> inline T& RDD(T &);
inline LL RDD() {LL x; return RDD(x);}
template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1) {RD(x0), RD(x1); return x0;}
template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2) {RD(x0), RD(x1), RD(x2); return x0;}
template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3) {RD(x0), RD(x1), RD(x2), RD(x3); return x0;}
template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4) {RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5) {RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6) {RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;}
template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1) {OT(x0), OT(x1);}
template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2) {OT(x0), OT(x1), OT(x2);}
template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3) {OT(x0), OT(x1), OT(x2), OT(x3);}
template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4) {OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5) {OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6) {OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);}
inline char& RC(char &a, char &b) {RC(a), RC(b); return a;}
inline char& RC(char &a, char &b, char &c) {RC(a), RC(b), RC(c); return a;}
inline char& RC(char &a, char &b, char &c, char &d) {RC(a), RC(b), RC(c), RC(d); return a;}
inline char& RC(char &a, char &b, char &c, char &d, char &e) {RC(a), RC(b), RC(c), RC(d), RC(e); return a;}
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f) {RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;}
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g) {RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;}
inline DB& RF(DB &a, DB &b) {RF(a), RF(b); return a;}
inline DB& RF(DB &a, DB &b, DB &c) {RF(a), RF(b), RF(c); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d) {RF(a), RF(b), RF(c), RF(d); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e) {RF(a), RF(b), RF(c), RF(d), RF(e); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f) {RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;}
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g) {RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;}
inline void RS(char *s1, char *s2) {RS(s1), RS(s2);}
inline void RS(char *s1, char *s2, char *s3) {RS(s1), RS(s2), RS(s3);}
template<class T0, class T1>inline T0& RDD(T0&a, T1&b) {RDD(a), RDD(b); return a;}
template<class T0, class T1, class T2>inline T1& RDD(T0&a, T1&b, T2&c) {RDD(a), RDD(b), RDD(c); return a;}
template<class T> inline void RST(T &A) {memset(A, 0, sizeof(A));}
template<class T> inline void FLC(T &A, int x) {memset(A, x, sizeof(A));}
template<class T> inline void CLR(T &A) {A.clear();}
template<class T0, class T1> inline void RST(T0 &A0, T1 &A1) {RST(A0), RST(A1);}
template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2) {RST(A0), RST(A1), RST(A2);}
template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3) {RST(A0), RST(A1), RST(A2), RST(A3);}
template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4) {RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5) {RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6) {RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);}
template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x) {FLC(A0, x), FLC(A1, x);}
template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x);}
template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);}
template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x) {FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);}
template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q) {while(!Q.empty()) Q.pop();}
template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q) {while(!Q.empty()) Q.pop();}
template<class T> inline void CLR(stack<T> &S) {while(!S.empty()) S.pop();}
template<class T> inline void CLR(queue<T> &Q) {while(!Q.empty()) Q.pop();}
template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1) {CLR(A0), CLR(A1);}
template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2) {CLR(A0), CLR(A1), CLR(A2);}
template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3) {CLR(A0), CLR(A1), CLR(A2), CLR(A3);}
template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4) {CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);}
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5) {CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6) {CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);}
template<class T> inline void CLR(T &A, int n) {REP(i, n) CLR(A[i]);}
template<class T> inline bool EPT(T &a) {return a.empty();}
template<class T> inline T& SRT(T &A) {sort(ALL(A)); return A;}
template<class T, class C> inline T& SRT(T &A, C B) {sort(ALL(A), B); return A;}
template<class T> inline T& RVS(T &A) {reverse(ALL(A)); return A;}
template<class T> inline T& UNQQ(T &A) {A.resize(unique(ALL(A)) - A.begin()); return A;}
template<class T> inline T& UNQ(T &A) {SRT(A); return UNQQ(A);}
/** Constant List .. **/ //{
const int MOD = 1e5;//int(1e9) + 7;
//const int MOD = 19901013;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
const DB EPS = 1e-9;
const DB OO = 1e20;
const DB PI = acos(-1.0); //M_PI;
const int dx[] = { -1, 0, 1, 0};
const int dy[] = {0, 1, 0, -1};
//}
/** Add On .. **/ //{
// <<= '0. Nichi Joo ., //{
template<class T> inline bool checkMin(T &a, const T b) {return b < a ? a = b, 1 : 0;}
template<class T> inline bool checkMax(T &a, const T b) {return a < b ? a = b, 1 : 0;}
template <class T, class C> inline bool checkUpd(T& a, const T b, C c) {return c(b, a) ? a = b, 1 : 0;}
template<class T> inline T min(T a, T b, T c) {return min(min(a, b), c);}
template<class T> inline T max(T a, T b, T c) {return max(max(a, b), c);}
template<class T> inline T min(T a, T b, T c, T d) {return min(min(a, b), min(c, d));}
template<class T> inline T max(T a, T b, T c, T d) {return max(max(a, b), max(c, d));}
template<class T> inline T min(T a, T b, T c, T d, T e) {return min(min(min(a, b), min(c, d)), e);}
template<class T> inline T max(T a, T b, T c, T d, T e) {return max(max(max(a, b), max(c, d)), e);}
template<class T> inline T sqr(T a) {return a * a;}
template<class T> inline T cub(T a) {return a * a * a;}
template<class T> inline T ceil(T x, T y) {return (x - 1) / y + 1;}
template<class T> T abs(T x) {return x > 0 ? x : -x;}
inline int sgn(DB x) {return x < -EPS ? -1 : x > EPS;}
inline int sgn(DB x, DB y) {return sgn(x - y);}
inline DB cos(DB a, DB b, DB c) {return (sqr(a) + sqr(b) - sqr(c)) / (2 * a * b);}
inline DB cot(DB x) {return 1. / tan(x);};
inline DB sec(DB x) {return 1. / cos(x);};
inline DB csc(DB x) {return 1. / sin(x);};
//}
// <<= '2. Number Theory .,//{
namespace NT {
#define gcd __gcd
inline LL lcm(LL a, LL b) {return a * b / gcd(a, b);}
inline void INC(int &a, int b) {a += b; if(a >= MOD) a -= MOD;}
inline int sum(int a, int b) {a += b; if(a >= MOD) a -= MOD; return a;}
/* 模数两倍刚好超 int 时。
inline int sum(uint a, int b){a += b; a %= MOD;if (a < 0) a += MOD; return a;}
inline void INC(int &a, int b){a = sum(a, b);}
*/
inline void DEC(int &a, int b) {a -= b; if(a < 0) a += MOD;}
inline int dff(int a, int b) {a -= b; if(a < 0) a += MOD; return a;}
inline void MUL(int &a, int b) {a = (LL)a * b % MOD;}
//inline int pdt(int a, int b){return (LL)a * b % MOD;}
inline int pdt(int x, int y) {
int ret; __asm__ __volatile__(" mull %%ebx
divl %%ecx
":"=d"(ret):"a"(x), "b"(y), "c"(MOD));
return ret;
}
inline int gcd(int m, int n, int &x, int &y) {
x = 1, y = 0; int xx = 0, yy = 1, q;
while(1) {
q = m / n, m %= n;
if(!m) {x = xx, y = yy; return n;}
DEC(x, pdt(q, xx)), DEC(y, pdt(q, yy));
q = n / m, n %= m;
if(!n) return m;
DEC(xx, pdt(q, x)), DEC(yy, pdt(q, y));
}
}
inline int sum(int a, int b, int c) {return sum(a, sum(b, c));}
inline int sum(int a, int b, int c, int d) {return sum(sum(a, b), sum(c, d));}
inline int pdt(int a, int b, int c) {return pdt(a, pdt(b, c));}
inline int pdt(int a, int b, int c, int d) {return pdt(pdt(a, b), pdt(c, d));}
inline int pow(int a, LL b) {
int c(1);
while(b) {
if(b & 1) MUL(c, a);
MUL(a, a), b >>= 1;
}
return c;
}
template<class T> inline T pow(T a, LL b) {
T c(1);
while(b) {
if(b & 1) c *= a;
a *= a, b >>= 1;
}
return c;
}
template<class T> inline T pow(T a, int b) {
return pow(a, (LL)b);
}
inline int _I(int b) {
int a = MOD, x1 = 0, x2 = 1, q;
while(1) {
q = a / b, a %= b;
if(!a) return x2;
DEC(x1, pdt(q, x2));
q = b / a, b %= a;
if(!b) return x1;
DEC(x2, pdt(q, x1));
}
}
inline void DIV(int &a, int b) {MUL(a, _I(b));}
inline int qtt(int a, int b) {return pdt(a, _I(b));}
struct Int {
int val;
operator int() const {return val;}
Int(int _val = 0): val(_val) {
val %= MOD;
if(val < 0) val += MOD;
}
Int(LL _val): val(_val) {
_val %= MOD;
if(_val < 0) _val += MOD;
val = _val;
}
Int& operator +=(const int& rhs) {INC(val, rhs); rTs;}
Int operator +(const int& rhs) const {return sum(val, rhs);}
Int& operator -=(const int& rhs) {DEC(val, rhs); rTs;}
Int operator -(const int& rhs) const {return dff(val, rhs);}
Int& operator *=(const int& rhs) {MUL(val, rhs); rTs;}
Int operator *(const int& rhs) const {return pdt(val, rhs);}
Int& operator /=(const int& rhs) {DIV(val, rhs); rTs;}
Int operator /(const int& rhs) const {return qtt(val, rhs);}
Int operator-()const {return MOD - *this;}
};
} using namespace NT;//}
// <<= '7 Matrix Theory ..//
namespace MT {
const int N = 100;
int n = 0;
typedef int rec ;
struct matrix {
rec d[N][N];
void init(rec e = 0) {RST(d); if(e)REP(i, n) d[i][i] = e;}
matrix(rec e = 0) {init(e);}
matrix operator * (const matrix &rhs)const {
matrix res; // REP(i,j,k,n,n,n) res.d[i][j] += d[i][k]*rhs.d[k][j];
REP_2(i, j, n, n) {
LL tmp = 0; REP(k, n) tmp += (LL)d[i][k] * rhs.d[k][j];;
res.d[i][j] = tmp % MOD;
}
return res;
}
matrix operator *= (const matrix &rhs) {
(*this) = (*this) * rhs;
}
inline int res() {
int res = 0;
REP(i, n) INC(res, d[0][i]);
return res;
}
inline matrix pow_sum(const matrix &a, ULL nn) {
matrix t; REP_2(i, j, n, n) t.d[i][j] = t.d[i][j + n] = a.d[i][j];
FOR_C(i, n, n * 2) t.d[i][i] = 1; n <<= 1; t = pow(t, (LL)nn), n >>= 1;
REP_2(i, j, n, n) t.d[i][j] = t.d[i][j + n];
return t;
}
template<class T> T pow_sum(T a, ULL nn) {
int _n = n; n = 1; matrix t; t.d[0][0] = a;
t = pow_sum(t, nn), n = _n;
return t.d[0][0];
}
};
};
/** I/O Accelerator Interface .. **/ //{
#define g (c=getchar())
#define d isdigit(g)
#define p x=x*10+c-'0'
#define n x=x*10+'0'-c
#define pp l/=10,p
#define nn l/=10,n
template<class T> inline T& RD(T &x) {
char c;
while(!d); x = c - '0';
while(d)p;
return x;
}
template<class T> inline T& RDD(T &x) {
char c;
while(g, c != '-' && !isdigit(c));
if(c == '-') {x = '0' - g; while(d)n;}
else {x = c - '0'; while(d)p;}
return x;
}
inline DB& RF(DB &x) {
//scanf("%lf", &x);
char c;
while(g, c != '-' && c != '.' && !isdigit(c));
if(c == '-')if(g == '.') {x = 0; DB l = 1; while(d)nn; x *= l;}
else {x = '0' - c; while(d)n; if(c == '.') {DB l = 1; while(d)nn; x *= l;}}
else if(c == '.') {x = 0; DB l = 1; while(d)pp; x *= l;}
else {x = c - '0'; while(d)p; if(c == '.') {DB l = 1; while(d)pp; x *= l;}}
return x;
}
#undef nn
#undef pp
#undef n
#undef p
#undef d
#undef g
inline char* RS(char *s) {
//gets(s);
scanf("%s", s);
return s;
}
LL last_ans; int Case; template<class T> inline void OT(const T &x) {
//printf("Case #%d: ", ++Case);
//printf("%lld
", x);
//printf("%.9f
", x);
printf("%d
", x);
//cout << x << endl;
//last_ans = x;
}
//}/* .................................................................................................................................. */
namespace ACM { // Aho-Corasick Automaton
const int L = 11, N = 10 * L, Z = 4;
int trans[N][Z], fail[N], cnt[N], Q[N], u, cz, op, tot;
char str[L]; int ord[128], n;
inline int new_node() {
RST(trans[tot]), fail[tot] = cnt[tot] = 0;
return tot++;
}
#define v trans[u][c]
#define f trans[fail[u]][c]
inline void Build() {
cz = op = u = 0; REP(c, Z) if(v) Q[op++] = v;
while(cz < op) {
u = Q[cz++]; REP(c, Z)
if(v) fail[Q[op++] = v] = f, cnt[v] |= cnt[f];
else v = f;
}
}
#define c ord[*cur]
inline void Insert() {
RS(str), u = 0; REP_S(cur, str) {
if(cnt[v]) return ;
if(!v) v = new_node();
u = v;
}
cnt[u] = 1;
}
#undef c
#define u Q[i]
#define H fail
int Run() {
op = 0; REP(i, tot) if(!cnt[i]) H[i] = op, Q[op++] = i; MT::n = tot;
static MT::matrix A; A.init();
REP_2(i, c, op, Z) if(!cnt[v]) ++A.d[H[u]][H[v]];
return pow(A, n).res();
}
void Init() {
int m; RD(m, n), tot = 0, new_node();
DO(m) Insert(); Build();
}
} using namespace ACM;
int main() {
ord['A'] = 0, ord['T'] = 1, ord['G'] = 2, ord['C'] = 3;
Init(), OT(Run());
return 0;
}
上面是岛娘的代码,真心快呀,改天好好学习下