• Tensorflow机器学习入门——MINIST数据集识别(卷积神经网络)


    #自动下载并加载数据
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    import tensorflow as tf
    
    # truncated_normal: https://www.cnblogs.com/superxuezhazha/p/9522036.html
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
    
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
      
    #conv2d: https://blog.csdn.net/qq_30934313/article/details/86626050   
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    #max_pool: https://blog.csdn.net/coder_xiaohui/article/details/78025379
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')
    
    
    
    
    x = tf.placeholder("float", shape=[None, 784])
    y_ = tf.placeholder("float", shape=[None, 10])
    keep_prob = tf.placeholder("float")
    
    #卷积池化1
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1,28,28,1])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1) 
    
    #卷积池化2
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    #全连接层1
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    #dropout:https://blog.csdn.net/yangfengling1023/article/details/82911306
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    #全连接层2
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    #误差优化
    cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    #计算准确率
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    
    #训练
    with tf.Session() as sess:
        init = tf.initialize_all_variables()
        sess.run(init)
        for i in range(20000):
            batch = mnist.train.next_batch(50)
            if i%100 == 0:
                train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
                print ("step %d, training accuracy %g"%(i, train_accuracy))
            train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    
        print ("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
        
    
                            
  • 相关阅读:
    PHP 命名空间
    使用 htaccess 重写 url,隐藏查询字符串
    HTML 长文本换行
    Mac OS X 上的Apache配置
    无法debug断点跟踪JDK源代码——missing line number attributes的解决方法
    根据多条件删除还能这样写
    wm_concat()函数
    spring 事务-使用@Transactional 注解(事务隔离级别)
    spring 中常用的两种事务配置方式以及事务的传播性、隔离级别
    oracle 中SQL 语句开发语法 SELECT INTO含义
  • 原文地址:https://www.cnblogs.com/Fengqiao/p/MINIST_CNN.html
Copyright © 2020-2023  润新知