一、IO模型介绍
五种IO模型
本文讨论的背景是Linux环境下的network IO
- blocking IO 阻塞IO
- nonblocking IO 非阻塞IO
- IO multiplexing IO多路复用
- signal driven IO 信号驱动IO
- asynchronous IO 异步IO
由signal driven IO(信号驱动IO)在实际中并不常用,所以主要介绍其余四种IO Model。
再说一下IO发生时涉及的对象和步骤。对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),
另一个就是系统内核(kernel)。当一个read操作发生时,该操作会经历两个阶段:
#1)等待数据准备 (Waiting for the data to be ready) #2)将数据从内核拷贝到进程中(Copying the data from the kernel to the process)
二、阻塞IO(blocking IO)模型
在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:
当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,
还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,
它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
所以,blocking IO的特点就是在IO执行的两个阶段(等待数据和拷贝数据两个阶段)都被block了。
三、非阻塞IO(nonblocking IO)模型
Linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:
前三次调用recvfrom时没有数据可以返回,因此内核转而立即返回一个EWOULDBLOCK错误,第四次调用recvfrom时已有一个数据报准备好,它被复制到应用进程缓冲区,
于是recvfrom成功返回。
当一个应用进程像这样对一个非阻塞描述符玄幻调用recvfrom时,我们称之为轮询(polling)。轮寻对于CPU来说是较大的浪费,一般只有在特定的场景下才使用。
应用进程持续轮询内核,以查看某个操作是否就绪。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,
进程仍然是属于阻塞的状态。
所以,在非阻塞式IO中,用户进程其实是需要不断的主动询问内核数据准备好了没有。
#Server端 import socket ip_port = ('127.0.0.1',8080) sk = socket.socket() sk.bind(ip_port) sk.setblocking(False) #把socket当中所有需要阻塞的方法都改变成非阻塞 sk.listen() conn_l = [] #用来存储所有来请求server端的conn连接 del_conn = [] #用来存储所有已经断开与server端连接的conn while True: try: conn,addr = sk.accept() print('建立连接了:',addr) conn_l.append(conn) except BlockingIOError: for con in conn_l: try: msg = con.recv(1024) if msg == b'': del_conn.append(con) continue print(msg.decode('utf-8')) con.send(b'byebye') except BlockingIOError: pass for con in del_conn: con.close() conn_l.remove(con) del_conn.clear() #client端: import socket import threading import time def func(i): ip_port = ('127.0.0.1',8080) sk = socket.socket() sk.connect(ip_port) msg = '你好,我是客户端{}!'.format(i).encode('utf-8') sk.send(msg) time.sleep(1) info = sk.recv(1024).decode('utf-8') print(info) sk.close() for i in range(20): threading.Thread(target=func,args=(i,)).start()
但是非阻塞IO模型绝不被推荐。
我们不能否则其优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在“”同时“”执行)。
但是也难掩其缺点:
#1. 循环调用recv()将大幅度推高CPU占用率;这也是我们在代码中留一句time.sleep(2)的原因,否则在低配主机下极容易出现卡机情况 #2. 任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成。这会导致整体数据吞吐量的降低。
四、IO多路复用(IO multiplexing)
有了IO多路复用,我们就可以用select或poll,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:
当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。
这个图和blocking IO的图其实并没有太大的不同,事实上还更差一些。因为这里需要使用两个系统调用(select和recvfrom),而blocking IO只调用了一个系统调用(recvfrom)。但是,用select的优势在于它可以同时处理多个connection。
强调:
1. 如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。
2. 在多路复用模型中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。
结论: select的优势在于可以处理多个连接,不适用于单个连接
#Server端: import select import socket sk = socket.socket() sk.bind(('127.0.0.1',8080)) sk.setblocking(False) sk.listen() read_lst = [sk] while True: r_lst,w_lst,x_lst = select.select(read_lst,[],[]) print('@@@@@@@',r_lst) for i in r_lst: if i is sk: conn,addr = i.accept() print(conn) read_lst.append(conn) print(r_lst) else: ret = i.recv(1024) if ret == b'': i.close() read_lst.remove(i) continue print(ret.decode('utf-8')) msg = input('>>>').encode('utf-8') i.send(msg) #client端: import socket import threading import time def func(): ip_port = ('127.0.0.1',8080) sk = socket.socket() sk.connect(ip_port) msg = '你好,我是客户端!'.encode('utf-8') sk.send(msg) time.sleep(3) info = sk.recv(1024).decode('utf-8') print(info) sk.close() for i in range(1): threading.Thread(target=func).start()
select监听fd变化的过程分析:
#用户进程创建socket对象,拷贝监听的fd到内核空间,每一个fd会对应一张系统文件表,内核空间的fd响应到数据后,就会发送信号给用户进程数据已到; #用户进程再发送系统调用,比如(accept)将内核空间的数据copy到用户空间,同时作为接受数据端内核空间的数据清除,这样重新监听时fd再有新的数据又可以响应到了(发送端因为基于TCP协议所以需要收到应答后才会清除)。
该模型的优点:
#相比其他模型,使用select() 的事件驱动模型只用单线程(进程)执行,占用资源少,不消耗太多 CPU,同时能够为多客户端提供服务。如果试图建立一个简单的事件驱动的服务器程序,这个模型有一定的参考价值。
该模型的缺点:
#首先select()接口并不是实现“事件驱动”的最好选择。因为当需要探测的句柄值较大时,select()接口本身需要消耗大量时间去轮询各个句柄。
#很多操作系统提供了更为高效的接口,如linux提供了epoll,BSD提供了kqueue,Solaris提供了/dev/poll,…。
#如果需要实现更高效的服务器程序,类似epoll这样的接口更被推荐。遗憾的是不同的操作系统特供的epoll接口有很大差异,
#所以使用类似于epoll的接口实现具有较好跨平台能力的服务器会比较困难。 #其次,该模型将事件探测和事件响应夹杂在一起,一旦事件响应的执行体庞大,则对整个模型是灾难性的。
五、信号驱动IO(signal driven IO )
六、异步IO(asynchronous IO)
Linux下的asynchronous IO其实用得不多,从内核2.6版本才开始引入。先看一下它的流程:
用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。
七、IO模型对比
5种不同IO模型,可以看出,前4中模型主要区别在于第一阶段,因为第二阶段是一样的:在数据从内核复制到调用者的缓冲区期间,进程阻塞于recvfrom调用,
相反,异步IO模型在这两个阶段都要处理,从而不同于其他4种模型。
同步IO和异步IO对比:
POSIX把这两个术语定义如下:
- 同步IO操作(synchronous IO operation)导致请求进程阻塞,知道IO操作完成
- 异步IO操作( asynchronous I/O operation)不导致请求进程阻塞。
根据上述定义:前4种模型,阻塞IO模型、非阻塞IO模型、IO多路复用模型和信号驱动IO模型都是同步IO模型,因为其中真正的IO操作(recvfrom)将阻塞进程,
只有异步IO模型与POSIX定义的异步IO相匹配。
八、模块介绍
1.select,poll,epoll
select,poll,epoll都是IO多路复用的机制,I/O多路复用就是通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知应用程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。
1.select的第一个参数nfds为fdset集合中最大描述符值加1,fdset是一个位数组,其大小限制为__FD_SETSIZE(1024),位数组的每一位代表其对应的描述符是否需要被检查。第二三四参数表示需要关注读、写、错误事件的文件描述符位数组,这些参数既是输入参数也是输出参数,可能会被内核修改用于标示哪些描述符上发生了关注的事件,所以每次调用select前都需要重新初始化fdset。timeout参数为超时时间,该结构会被内核修改,其值为超时剩余的时间。 select的调用步骤如下: (1)使用copy_from_user从用户空间拷贝fdset到内核空间 (2)注册回调函数__pollwait (3)遍历所有fd,调用其对应的poll方法(对于socket,这个poll方法是sock_poll,sock_poll根据情况会调用到tcp_poll,udp_poll或者datagram_poll) (4)以tcp_poll为例,其核心实现就是__pollwait,也就是上面注册的回调函数。 (5)__pollwait的主要工作就是把current(当前进程)挂到设备的等待队列中,不同的设备有不同的等待队列,对于tcp_poll 来说,其等待队列是sk->sk_sleep(注意把进程挂到等待队列中并不代表进程已经睡眠了)。在设备收到一条消息(网络设备)或填写完文件数 据(磁盘设备)后,会唤醒设备等待队列上睡眠的进程,这时current便被唤醒了。 (6)poll方法返回时会返回一个描述读写操作是否就绪的mask掩码,根据这个mask掩码给fd_set赋值。 (7)如果遍历完所有的fd,还没有返回一个可读写的mask掩码,则会调用schedule_timeout是调用select的进程(也就是 current)进入睡眠。当设备驱动发生自身资源可读写后,会唤醒其等待队列上睡眠的进程。如果超过一定的超时时间(schedule_timeout 指定),还是没人唤醒,则调用select的进程会重新被唤醒获得CPU,进而重新遍历fd,判断有没有就绪的fd。 (8)把fd_set从内核空间拷贝到用户空间。 总结下select的几大缺点: (1)每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大 (2)同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大 (3)select支持的文件描述符数量太小了,默认是1024 2. poll与select不同,通过一个pollfd数组向内核传递需要关注的事件,故没有描述符个数的限制,pollfd中的events字段和revents分别用于标示关注的事件和发生的事件,故pollfd数组只需要被初始化一次。 poll的实现机制与select类似,其对应内核中的sys_poll,只不过poll向内核传递pollfd数组,然后对pollfd中的每个描述符进行poll,相比处理fdset来说,poll效率更高。poll返回后,需要对pollfd中的每个元素检查其revents值,来得指事件是否发生。 3.直到Linux2.6才出现了由内核直接支持的实现方法,那就是epoll,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。epoll可以同时支持水平触发和边缘触发(Edge Triggered,只告诉进程哪些文件描述符刚刚变为就绪状态,它只说一遍,如果我们没有采取行动,那么它将不会再次告知,这种方式称为边缘触发),理论上边缘触发的性能要更高一些,但是代码实现相当复杂。epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。另一个本质的改进在于epoll采用基于事件的就绪通知方式。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。 epoll既然是对select和poll的改进,就应该能避免上述的三个缺点。那epoll都是怎么解决的呢?在此之前,我们先看一下epoll 和select和poll的调用接口上的不同,select和poll都只提供了一个函数——select或者poll函数。而epoll提供了三个函 数,epoll_create,epoll_ctl和epoll_wait,epoll_create是创建一个epoll句柄;epoll_ctl是注 册要监听的事件类型;epoll_wait则是等待事件的产生。 对于第一个缺点,epoll的解决方案在epoll_ctl函数中。每次注册新的事件到epoll句柄中时(在epoll_ctl中指定 EPOLL_CTL_ADD),会把所有的fd拷贝进内核,而不是在epoll_wait的时候重复拷贝。epoll保证了每个fd在整个过程中只会拷贝 一次。 对于第二个缺点,epoll的解决方案不像select或poll一样每次都把current轮流加入fd对应的设备等待队列中,而只在 epoll_ctl时把current挂一遍(这一遍必不可少)并为每个fd指定一个回调函数,当设备就绪,唤醒等待队列上的等待者时,就会调用这个回调 函数,而这个回调函数会把就绪的fd加入一个就绪链表)。epoll_wait的工作实际上就是在这个就绪链表中查看有没有就绪的fd(利用 schedule_timeout()实现睡一会,判断一会的效果,和select实现中的第7步是类似的)。 对于第三个缺点,epoll没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048,举个例子, 在1GB内存的机器上大约是10万左右,具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。 总结: (1)select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用 epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在 epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的 时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间,这就是回调机制带来的性能提升。 (2)select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要 一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内 部定义的等待队列),这也能节省不少的开销。
select机制 windows linux 都是操作系统轮询每一个监听的操作是否有读操作
poll 机制 linux 它可以监听的对象比select机制可以监听的多
随着监听项目的增多,导致效率降低
epoll 机制 linux
这三种IO多路复用模型在不同的平台有着不同的支持,而epoll在windows下就不支持,好在我们有selectors模块,帮我们默认选择当前平台下最合适的
2.selectors
selectors会根据不同的平台导入合适的模块
#服务端 from socket import * import selectors sel=selectors.DefaultSelector() def accept(server_fileobj,mask): conn,addr=server_fileobj.accept() sel.register(conn,selectors.EVENT_READ,read) def read(conn,mask): try: data=conn.recv(1024) if not data: print('closing',conn) sel.unregister(conn) conn.close() return conn.send(data.upper()+b'_SB') except Exception: print('closing', conn) sel.unregister(conn) conn.close() server_fileobj=socket(AF_INET,SOCK_STREAM) server_fileobj.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) server_fileobj.bind(('127.0.0.1',8088)) server_fileobj.listen(5) server_fileobj.setblocking(False) #设置socket的接口为非阻塞 sel.register(server_fileobj,selectors.EVENT_READ,accept) #相当于网select的读列表里append了一个文件句柄server_fileobj,并且绑定了一个回调函数accept while True: events=sel.select() #检测所有的fileobj,是否有完成wait data的 for sel_obj,mask in events: callback=sel_obj.data #callback=accpet callback(sel_obj.fileobj,mask) #accpet(server_fileobj,1) #客户端 from socket import * c=socket(AF_INET,SOCK_STREAM) c.connect(('127.0.0.1',8088)) while True: msg=input('>>: ') if not msg:continue c.send(msg.encode('utf-8')) data=c.recv(1024) print(data.decode('utf-8'))