• POJ3436 ACM Computer Factory


    POJ3436 ACM Computer Factory
    Time Limit: 1000MS Memory Limit: 65536K
    Total Submissions: 3345 Accepted: 1112 Special Judge

    Description

    As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory.

    Every ACM computer consists of P parts. When all these parts are present, the computer is ready and can be shipped to one of the numerous ACM contests.

    Computer manufacturing is fully automated by using N various machines. Each machine removes some parts from a half-finished computer and adds some new parts (removing of parts is sometimes necessary as the parts cannot be added to a computer in arbitrary order). Each machine is described by its performance (measured in computers per hour), input and output specification.

    Input specification describes which parts must be present in a half-finished computer for the machine to be able to operate on it. The specification is a set of P numbers 0, 1 or 2 (one number for each part), where 0 means that corresponding part must not be present, 1 — the part is required, 2 — presence of the part doesn't matter.

    Output specification describes the result of the operation, and is a set of P numbers 0 or 1, where 0 means that the part is absent, 1 — the part is present.

    The machines are connected by very fast production lines so that delivery time is negligibly small compared to production time.

    After many years of operation the overall performance of the ACM Computer Factory became insufficient for satisfying the growing contest needs. That is why ACM directorate decided to upgrade the factory.

    As different machines were installed in different time periods, they were often not optimally connected to the existing factory machines. It was noted that the easiest way to upgrade the factory is to rearrange production lines. ACM directorate decided to entrust you with solving this problem.

    Input

    Input file contains integers P N, then N descriptions of the machines. The description of ith machine is represented as by 2 P + 1 integers Qi Si,1 Si,2...Si,P Di,1 Di,2...Di,P, whereQi specifies performance, Si,j — input specification for part jDi,k — output specification for part k.

    Constraints

    1 ≤ P ≤ 10, 1 ≤ ≤ 50, 1 ≤ Qi ≤ 10000

    Output

    Output the maximum possible overall performance, then M — number of connections that must be made, then M descriptions of the connections. Each connection between machines A and B must be described by three positive numbers A B W, where W is the number of computers delivered from A to B per hour.

    If several solutions exist, output any of them.

    Sample Input

    Sample input 1
    3 4
    15  0 0 0  0 1 0
    10  0 0 0  0 1 1
    30  0 1 2  1 1 1
    3   0 2 1  1 1 1
    Sample input 2
    3 5
    5   0 0 0  0 1 0
    100 0 1 0  1 0 1
    3   0 1 0  1 1 0
    1   1 0 1  1 1 0
    300 1 1 2  1 1 1
    Sample input 3
    2 2
    100  0 0  1 0
    200  0 1  1 1

    Sample Output

    Sample output 1
    25 2
    1 3 15
    2 3 10
    Sample output 2
    4 5
    1 3 3
    3 5 3
    1 2 1
    2 4 1
    4 5 1
    Sample output 3
    0 0

    Hint

    Bold texts appearing in the sample sections are informative and do not form part of the actual data.
    ***************************************************************************************
    题目大意:有p个零件和n个机器。每个机器加工时对这p个零件是否存在有一定的要求。现在给出每台机器的加工效率,加工时对p的要求,加工完后p的状况。求使得p全为1的最快的组合。
    解题思路:拆点+最大流。
    #include <stdio.h>
    #include <string.h>
    #include <vector>
    #define N 205
    #define P 15
    #define M 1000005
    #define INF 0x3f3f3f3f
    #define tk(a,b) (a+b*n)
    using namespace std;
    
    int in[N][P],ou[N][P],pe[N];
    int p,n,source,sink,eid,nn;
    int head[N],ed[M],nxt[M],val[M],vis[M],sta[M];
    int dist[N],gap[N];
    vector<int>ansa,ansb,ansc;
    
    void add_edge(int s,int e,int v,int xv)
    {
        sta[eid]=s;         if(!v)vis[eid]=1;
        ed[eid]=e;          val[eid]=v;
        nxt[eid]=head[s];   head[s]=eid++;
        sta[eid]=e;         if(!xv)vis[eid]=1;
        ed[eid]=s;          val[eid]=xv;
        nxt[eid]=head[e];   head[e]=eid++;
    }
    
    int ISAP(int pos,int cost)
    {
        if(pos==sink)
            return cost;
        int lv=cost,minh=nn-1;
        for(int i=head[pos];~i;i=nxt[i])
        {
            int e=ed[i],v=val[i];
            if(v>0)
            {
                if(dist[pos]==dist[e]+1)
                {
                    int d=min(v,lv);
                    d=ISAP(e,d);
                    lv-=d;
                    val[i]-=d;
                    val[i^1]+=d;
                    if(dist[source]>=nn)return cost-lv;
                    if(lv==0)break;
                }
                minh=min(minh,dist[e]);
            }
    
        }
        if(lv==cost)
        {
            gap[dist[pos]]--;
            if(!gap[dist[pos]])dist[source]=nn;
            dist[pos]=minh+1;
            gap[dist[pos]]++;
        }
        return cost-lv;
    }
    
    void re(void)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&pe[i]);
            for(int j=1;j<=p;j++)
                scanf("%d",&in[i][j]);
            for(int j=1;j<=p;j++)
                scanf("%d",&ou[i][j]);
        }
    }
    
    void run(void)
    {
        source=0;
        sink=2*n+1;
        eid=0;
        memset(head,-1,sizeof(head));
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n;i++)
            add_edge(tk(i,0),tk(i,1),pe[i],0);
        for(int i=1;i<=n;i++)
        {
            int mark1=0,mark2=0;
            for(int j=1;j<=p;j++)
                if(in[i][j]==1)
                {
                    mark1=1;
                    break;
                }
            if(!mark1)
                add_edge(source,tk(i,0),INF,0);
            for(int j=1;j<=p;j++)
                if(ou[i][j]==0)
                {
                    mark2=1;
                    break;
                }
            if(!mark2)
                add_edge(tk(i,1),sink,INF,0);
            if(!mark1)
                continue;
            for(int j=1;j<=n;j++)
            {
                if(i==j)continue;
                mark1=0;
                for(int k=1;k<=p;k++)
                    if((in[i][k]==0&&ou[j][k]==1)||(in[i][k]==1&&ou[j][k]==0))
                    {
                        mark1=1;
                        break;
                    }
                if(mark1)continue;
                add_edge(tk(j,1),tk(i,0),INF,0);
            }
        }
        nn=2*n+2;
        memset(dist,0,sizeof(dist));
        memset(gap,0,sizeof(gap));
        int ans=0;
        while(dist[source]<nn)
            ans+=ISAP(source,INF);
        printf("%d ",ans);
        ansa.clear();
        ansb.clear();
        ansc.clear();
        for(int i=0;i<eid;i++)
        {
            if(vis[i]==0||val[i]==0)continue;
            int s=ed[i],e=sta[i],v=val[i];
            if(s==source||e==sink)continue;
            if(s>n)s-=n;
            if(e>n)e-=n;
            if(s==e)continue;
            ansa.push_back(s);
            ansb.push_back(e);
            ansc.push_back(v);
        }
        printf("%d\n",ansa.size());
        for(int i=0;i<ansa.size();i++)
            printf("%d %d %d\n",ansa[i],ansb[i],ansc[i]);
    }
    
    int main()
    {
        while(scanf("%d%d",&p,&n)==2)
        {
            re();
            run();
        }
        return 0;
    }
    

      

    也许有挫折,但这些,怎能挡住湘北前进的步伐
  • 相关阅读:
    新的开始
    react的setState使用中遇到的问题
    h5的input的required使用中遇到的问题
    vue学习中v-if和v-show一起使用的问题
    异步 JavaScript 之 macrotask、microtask
    .eslintrc 文件
    Vue2学习结合bootstrapTable遇到的问题
    Vue2学习(3)
    ES6 箭头函数
    Vue2学习(2)
  • 原文地址:https://www.cnblogs.com/Fatedayt/p/2217566.html
Copyright © 2020-2023  润新知