POJ1990 MooFest
Time Limit: 1000MS | Memory Limit: 30000K | |
Total Submissions: 3400 | Accepted: 1330 |
Description
Every year, Farmer John's N (1 <= N <= 20,000) cows attend "MooFest",a social gathering of cows from around the world. MooFest involves a variety of events including haybale stacking, fence jumping, pin the tail on the farmer, and of course, mooing. When the cows all stand in line for a particular event, they moo so loudly that the roar is practically deafening. After participating in this event year after year, some of the cows have in fact lost a bit of their hearing.
Each cow i has an associated "hearing" threshold v(i) (in the range 1..20,000). If a cow moos to cow i, she must use a volume of at least v(i) times the distance between the two cows in order to be heard by cow i. If two cows i and j wish to converse, they must speak at a volume level equal to the distance between them times max(v(i),v(j)).
Suppose each of the N cows is standing in a straight line (each cow at some unique x coordinate in the range 1..20,000), and every pair of cows is carrying on a conversation using the smallest possible volume.
Compute the sum of all the volumes produced by all N(N-1)/2 pairs of mooing cows.
Each cow i has an associated "hearing" threshold v(i) (in the range 1..20,000). If a cow moos to cow i, she must use a volume of at least v(i) times the distance between the two cows in order to be heard by cow i. If two cows i and j wish to converse, they must speak at a volume level equal to the distance between them times max(v(i),v(j)).
Suppose each of the N cows is standing in a straight line (each cow at some unique x coordinate in the range 1..20,000), and every pair of cows is carrying on a conversation using the smallest possible volume.
Compute the sum of all the volumes produced by all N(N-1)/2 pairs of mooing cows.
Input
* Line 1: A single integer, N
* Lines 2..N+1: Two integers: the volume threshold and x coordinate for a cow. Line 2 represents the first cow; line 3 represents the second cow; and so on. No two cows will stand at the same location.
* Lines 2..N+1: Two integers: the volume threshold and x coordinate for a cow. Line 2 represents the first cow; line 3 represents the second cow; and so on. No two cows will stand at the same location.
Output
* Line 1: A single line with a single integer that is the sum of all the volumes of the conversing cows.
Sample Input
4 3 1 2 5 2 6 4 3
Sample Output
57
Source
*****************************************************************************
题目大意:一群牛参加完牛的节日后都有了不同程度的耳聋,第i头牛听见别人的讲话,别人的音量必须大于v[i],当两头牛i,j交流的时候,交流的最小声音为max{v[i],v[j]}*他们之间的距离。现在有n头牛,求他们之间两两交流最少要的音量和。
解题思路:一开始水水的写了一个n^2的算法,这题终究没有那么白痴。原来是用了树状数组。首先将这n头牛按照v值从小到大排序(后面说的排在谁的前面,都是基于这个排序)。这样,排在后面的牛和排在前面的牛讲话,两两之间所用的音量必定为后面的牛的v值,这样一来才有优化的余地。然后,对于某头牛i来说,只要关心跟排在他前面的牛交流就好了。我们必须快速地求出排在他前面的牛和他之间距离的绝对值只和ans,只要快速地求出ans,就大功告成。这里需要两个树状数组。树状数组可以用来快速地求出某个区间内和,利用这个性质,我们可以快速地求出对于牛i,x位置比i小牛的个数,以及这个牛的位置之和。这里就需要两个树状数组,一个记录比x小的牛的个数a,一个记录比x小的牛的位置之和b,然后,我们可以快速地求出牛i和比牛i位置小的牛的所有距离的绝对值为:a*x[i]-b;也可以方便地求出比牛i位置大的牛到牛i的距离和,即所有距离-b-(i-1-a)*x[i];那么此题就差不多了。
#include <stdio.h> #include <string.h> #include <algorithm> #define MAX(a,b) (a>b?a:b) #define ABS(a) ((a)>0?(a):-1*(a)) #define TK(a) (a&(a^(a-1))) #define N 20005 using namespace std; struct Node { long long v,x; bool operator<(const Node & a)const { return v<a.v; } }node[N]; long long num[2][N]; long long rsum(int pos,int d) { long long ans=0; while(pos>0) { ans+=num[d][pos]; pos-=TK(pos); } return ans; } void toput(int pos,long long v,int d) { while(pos<=20000) { num[d][pos]+=v; pos+=TK(pos); } } int main() { int n; scanf("%d",&n); memset(num,0,sizeof(num)); for(int i=1;i<=n;i++) scanf("%lld%lld",&node[i].v,&node[i].x); sort(node+1,node+1+n); long long ans=0; for(int i=1;i<=n;i++) { long long a=rsum(node[i].x,0),b=rsum(node[i].x,1); ans+=(node[i].x*a-b+rsum(20000,1)-b-(i-1-a)*node[i].x)*node[i].v; toput(node[i].x,1,0); toput(node[i].x,node[i].x,1); } printf("%lld\n",ans); }