• [bzoj4826][Hnoi2017]影魔


    来自FallDream的博客,未经允许,请勿转载,谢谢。


    影魔,奈文摩尔,据说有着一个诗人的灵魂。事实上,他吞噬的诗人灵魂早已成千上万。千百年来,他收集了各式各样的灵魂,包括诗人、牧师、帝王、乞丐、奴隶、罪人,当然,还有英雄。每一个灵魂,都有着自己的战斗力,而影魔,靠这些战斗力提升自己的攻击。奈文摩尔有 n 个灵魂,他们在影魔宽广的体内可以排成一排,从左至右标号 1 到 n。第 i个灵魂的战斗力为 k[i],灵魂们以点对的形式为影魔提供攻击力,对于灵魂对 i,j(i<j)来说,若不存在 k[s](i<s<j)大于 k[i]或者 k[j],则会为影魔提供 p1 的攻击力(可理解为:当 j=i+1 时,因为不存在满足 i<s<j 的 s,从而 k[s]不存在,这时提供 p1 的攻击力;当 j>i+1 时,若max{k[s]|i<s<j<=min{k[i],k[j]} , 则 提 供 p1 的 攻击力 ); 另 一 种 情 况 , 令 c 为k[i+1],k[i+2],k[i+3]......k[j-1]的最大值,若 c 满足:k[i]<c<k[j],或
    者 k[j]<c<k[i],则会为影魔提供 p2 的攻击力,当这样的 c 不存在时,自然不会提供这 p2 的攻击力;其他情况的点对,均不会为影魔提供攻击力。影魔的挚友噬魂鬼在一天造访影魔体内时被这些灵魂吸引住了,他想知道,对于任意一段区间[a,b],1<=a<b<=n,位于这些区间中的灵魂对会为影魔提供多少攻击力,即考虑 所有满足a<=i<j<=b 的灵魂对 i,j 提供的攻击力之和。顺带一提,灵魂的战斗力组成一个 1 到 n 的排列:k[1],k[2],...,k[n]。
    n,m<=2*10^5
     
    题面剧毒...看错了几次
    考虑枚举中间那一段的最值是啥,那么对于每个枚举的值,显然需要找到的是左右第一个大于它的。这个可以单调栈实现。
    然后假设左右两边第一个大于它的是l,r 那么
    l和r贡献p1
    [l+1,i-1]和r贡献p2
    l和[i+1,r-1]贡献p3
    另外 对于每个i<n  i和i+1有贡献p1
    查询可以看作是查矩形  修改是改线段 那么主席树维护即可。
    复杂度nlogn
    #include<iostream>
    #include<cstdio>
    #include<vector>
    #define MN 200000
    #define ll long long
    #define getchar() (*S++)
    char B[1<<26],*S=B;
    using namespace std;
    inline int read()
    {
        int x = 0; char ch = getchar();
        while(ch < '0' || ch > '9')ch = getchar();
        while(ch >= '0' && ch <= '9'){x = x * 10 + ch - '0';ch = getchar();}
        return x;
    }
    
    int a[MN+5],n,m,p1,p2,cnt=0,L[MN+5],R[MN+5],rt[MN+5];
    struct Tree{int l,r,x;ll val;}T[MN*80];
    struct data{int l,r,x;};
    vector<data> v[MN+5];
    struct MyQue
    {
        int q[MN+5],top;
        void clear(int x){q[top=0]=x;}
        int ins(int i)
        {
            while(top&&a[q[top]]<a[i]) --top;
            int ret=q[top];
            q[++top]=i;
            return ret;
        }
    }Q;
    
    inline int NewNode(int x){T[++cnt]=T[x];return cnt;}
    
    ll Query(int x,int l,int r,int lt,int rt)
    {
        if(l==lt&&r==rt) return T[x].val;
        int mid=lt+rt>>1;ll sum=1LL*(r-l+1)*T[x].x;
        if(r<=mid) return sum+Query(T[x].l,l,r,lt,mid);
        else if(l>mid) return sum+Query(T[x].r,l,r,mid+1,rt);
        else return sum+Query(T[x].l,l,mid,lt,mid)+Query(T[x].r,mid+1,r,mid+1,rt);
    }
    
    void Modify(int x,int l,int r,int lt,int rt,int ad)
    {
        T[x].val+=1LL*(r-l+1)*ad;
        if(l==lt&&r==rt)
        {
            T[x].x+=ad;
            return;
        }
        int mid=lt+rt>>1;
        if(r<=mid) Modify(T[x].l=NewNode(T[x].l),l,r,lt,mid,ad);
        else if(l>mid) Modify(T[x].r=NewNode(T[x].r),l,r,mid+1,rt,ad);
        else Modify(T[x].l=NewNode(T[x].l),l,mid,lt,mid,ad),
             Modify(T[x].r=NewNode(T[x].r),mid+1,r,mid+1,rt,ad);
    }
    
    int main()
    {
        fread(B,1,1<<26,stdin);
        n=read();m=read();p1=read();p2=read();
        for(int i=1;i<=n;++i) a[i]=read();
        for(int i=1;i<=n;++i) L[i]=Q.ins(i);
        Q.clear(n+1);
        for(int i=n;i;--i) R[i]=Q.ins(i);
        for(int i=1;i<=n;++i)
        {
            if(i<n) v[i].push_back((data){i+1,i+1,p1});
            if(L[i]&&R[i]<=n) v[L[i]].push_back((data){R[i],R[i],p1});
            if(L[i]&&i<=R[i]-2) v[L[i]].push_back((data){i+1,R[i]-1,p2});
            if(R[i]<=n&&i>=L[i]+2) v[R[i]].push_back((data){L[i]+1,i-1,p2});
        }
        for(int i=1;i<=n;++i)
        {
            rt[i]=rt[i-1];
            for(int j=0;j<v[i].size();++j)
                Modify(rt[i]=NewNode(rt[i]),v[i][j].l,v[i][j].r,1,n,v[i][j].x);
        }
        for(int i=1;i<=m;++i)
        {
            int l=read(),r=read();
            printf("%lld
    ",Query(rt[r],l,r,1,n)-Query(rt[l-1],l,r,1,n));
        }
        return 0;
    }
  • 相关阅读:
    ActiveMQ的spring配置文件
    ActiveMQ consumer按顺序处理消息
    ActiveMQ异步分发消息
    2个线程顺序工作
    hadoop更换硬盘
    linux内存条排查
    gitlab迁移升级
    linux 监控网卡实时流量iftop
    gitlab7.2安装
    为首次部署MongoDB做好准备:容量计划和监控
  • 原文地址:https://www.cnblogs.com/FallDream/p/bzoj4826.html
Copyright © 2020-2023  润新知