• Python+OpenCV图像处理(三)—— Numpy数组操作图片


    一.改变图片每个像素点每个通道的灰度值

    (一)

    代码如下:

    #遍历访问图片每个像素点,并修改相应的RGB
    import cv2 as cv
    def access_pixels(image):
        print(image.shape)
        height = image.shape[0]
        width = image.shape[1]
        channels = image.shape[2]
        print(" %s  height: %s  channels: %s"%(width, height, channels))
        for row in range(height):
            for col in range(width):
                for c in range(channels):
                    pv = image[row , col, c]        #获取每个像素点的每个通道的数值
                    image[row, col, c]=255 - pv     #灰度值是0-255   这里是修改每个像素点每个通道灰度值
        cv.imshow("second_image",image)
    src=cv.imread('E:imageloadexample.png')   #blue, green, red
    cv.namedWindow('first_image', cv.WINDOW_AUTOSIZE)
    cv.imshow('first_image', src)
    t1 = cv.getTickCount()    #GetTickcount函数返回从操作系统启动到当前所经过的毫秒数
    access_pixels(src)
    t2 = cv.getTickCount()
    time = (t2-t1)/cv.getTickFrequency()  #getTickFrequency函数返回CPU的频率,就是每秒的计时周期数
    print("time : %s ms"%(time*1000) )    #输出运行时间
    cv.waitKey(0)
    cv.destroyAllWindows()

    运行结果:

    注意:

    1.image[i,j,c]   i表示图片的行数,j表示图片的列数,c表示图片的通道数(0代表B,1代表G,2代表R    一共是RGB三通道)。坐标是从左上角开始

    2.每个通道对应一个灰度值。灰度值概念:把白色与黑色之间按对数关系分成若干级,称为“灰度等级”。范围一般从0到255,白色为255,黑色为0。要详细了解灰度值和通道的概念,请参考这篇博客:https://blog.csdn.net/silence2015/article/details/53789748

    (二)

    上述代码实现像素取反的运行时间较长,下面代码运用opencv自带的库函数可以使运行时间大大减少。

    代码如下:

    #调用opencv的库函数快速实现像素取反
    import cv2 as cv
    def inverse(img):
        img = cv.bitwise_not(img)   #函数cv.bitwise_not可以实现像素点各通道值取反
        cv.imshow("second_image", img)
    
    src=cv.imread('E:imageloadexample.png')   #blue, green, red
    cv.namedWindow('first_image', cv.WINDOW_AUTOSIZE)
    cv.imshow('first_image', src)
    t1 = cv.getTickCount()    #GetTickcount函数返回从操作系统启动到当前所经过的毫秒数
    inverse(src)
    t2 = cv.getTickCount()
    time = (t2-t1)/cv.getTickFrequency()  #getTickFrequency函数返回CPU的频率,就是每秒的计时周期数
    print("time : %s ms"%(time*1000) )    #输出运行时间
    cv.waitKey(0)
    cv.destroyAllWindows()

    运行结果:

    可见,使用库函数 bitwise_not 可以使运行时间缩短13倍左右

    二.自定义一张三通道图片

    代码如下:

    #自定义一张三通道图片
    import cv2 as cv
    import numpy as np
    def creat_image():
        img = np.zeros([400, 400, 3], np.uint8)   #将所有像素点的各通道数值赋0
        img[:, :, 0] = np.ones([400, 400]) * 255   #0通道代表B
        # img[:, :, 1] = np.ones([400, 400]) * 255   #1通道代表G
        # img[:, :, 2] = np.ones([400, 400]) * 255   #2通道代表R
        cv.imshow("new_image",img)
    creat_image()
    cv.waitKey(0)
    cv.destroyAllWindows()

    运行结果:

    注意:

    1.np.zeros函数用于创建一个数值全为0的矩阵,np.ones用于创建一个数值全为1的矩阵

    2.当图片为多通道图片时,B:255  G:0  R:0 则三通道图片显示蓝色。所有通道数值组合示意图如下:

    补注:

    单通道: 此通道上值为0-255。 (255为白色,0是黑色) 只能表示灰度,不能表示彩色。
    三通道:BGR (255,255,255为白色, 0,0,0是黑色 )  可以表示彩色, 灰度也是彩色的一种。

    单通道和三通道区别见博客:https://blog.csdn.net/qq_32211827/article/details/56854985

    三、自定义一张单通道图片

    代码如下:

    #自定义一张单通道图片
    import cv2 as cv
    import numpy as np
    def creat_image():
        img = np.ones([400, 400, 1], np.uint8)   #该像素点只有一个通道,该函数使所有像素点的通道的灰度值为1
        img = img * 127       #使每个像素点单通道的灰度值变为127
        cv.imshow("new_image",img)
    creat_image()
    cv.waitKey(0)
    cv.destroyAllWindows()

    运行结果:

    注意:

    1.代码里 img = img * 127    表示数组里的每个数值都乘以127

    2.之所以np.ones函数参数类型是uint8,是因为uint8数的范围为0~255,  那么为0时恰好为黑色,为255时恰好为白色。若函数参数类型为int8,则int8类型数的范围为-128~127,那么-128则为黑色,127为白色

     

  • 相关阅读:
    MYSQL数据库——mysql的数据类型和运算符
    MYSQL数据库——表的基本操作(定义表的约束、查看表的结构、修改数据表、删除数据表)
    MYSQL数据库——mysql数据库的基本
    企业——自动化部署 ansible 中的一些常用命令及常用模块
    企业——自动化运维 ansible
    企业——saltstack自动化部署软件值JINJIA模块的使用
    企业——saltstack自动化部署软件之Grains、Pillar
    计算机网络——HTTP协议的请求方法
    JS获取option的value和text
    Redis 认识与安装
  • 原文地址:https://www.cnblogs.com/FHC1994/p/8998337.html
Copyright © 2020-2023  润新知