• CodeForces 1332D Walk on Matrix


    题意

    (Bob)想解决一个问题:一个(ncdot m)的矩阵,从((1,1))出发,只能走右和下,问从((1,1))((n,m))的最大(&)

    他的算法如下((C++))

        memset(dp, 0, sizeof(dp));
        dp[0][1] = a[1][1];
        for (int i = 1; i <= n; ++i) {
            for (int j = 1; j <= m; ++j) {
                dp[i][j] = max(dp[i - 1][j] & a[i][j], dp[i][j - 1] & a[i][j]);
            }
        }
        cout << dp[n][m];
    

    已知他的算法并不能得到最大的(&)

    给定一个(k),请构造出一个(ncdot m)的矩阵,使得最大(&)和比他的代码得出的答案大(k)

    (1leq n,mleq 500)

    (0leq a_{i,j}leq 3cdot 10^5)

    (0leq kleq 10^5)

    分析

    既然要针对(Bob)的算法进行构造,那么肯定要知道他的算法错在哪里(知己知彼,百战百胜)

    我们将第二个样例的矩阵作为输入,得到(Bob)的答案 ,发现是(2),在答案路径中,((3,4))前的节点是((3,3))

    我们输出(dp[3][3])发现是(4),但是在答案路径中,走到((3,3))时是(3),大概清楚了(&)和并不能进行贪心

    且可以模仿样例在答案路径中放入一个另一个更大的(&)

    我们考虑能否直接构造矩阵使得答案是(k),使得(Bob)的代码得到(0)

    首先考虑二维矩阵,发现((2,2))是的确是挑最大的(&)和,无法构造

    我们看到第二个样例是(3cdot 4)的矩阵,我们考虑能否构造出一个(2*3)的矩阵

    考虑设计两个路径

    • ((1,1)->(1,2)->(2,2)->(2,3))
    • ((1,1)->(2,1)->(2,2)->(2,3))

    通过样例得到灵感,第二条路径得到的((2,2))中的答案比第一条路径中大,但是不满足条件

    那么思考如果&(要大,不妨在)k(的二进制前面加上一个)'1'(,如果第二条路径要大,可以在)k(取反后前面在加一个)'1'$

    我们直接设计(a[2][3]=k),我们看数据范围看到(a[i][j])的最大值可以为(3cdot k),考虑如下构造:

    (k)变为(2)进制,设字符串为(s),将其各位取反得到字符串(s1)

    构造(2cdot 3)矩阵:

    (('1'+s)) ((s)) ((0))

    (('1'+s1)) (('1'+s)) ((s))

    然后将其转换为十进制即可

    路径一我们可以直接忽略(s)前面的(1)直接得到答案(k)

    路径二我们发现走到((2,2))时,答案是(s)前面的(1),那么这个和((2,3))的值(&)一定是(0)

    取反也可以用^,但写代码时没考虑那么多

    #pragma GCC optimize(3, "Ofast", "inline")
    
    #include <bits/stdc++.h>
    
    #define start ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    #define ll long long
    #define int ll
    #define ls st<<1
    #define rs st<<1|1
    #define pii pair<int,int>
    #define rep(z, x, y) for(int z=x;z<=y;++z)
    #define com bool operator<(const node &b)
    using namespace std;
    const int maxn = (ll) 3e5 + 5;
    const int mod = 998244353;
    const int inf = 0x3f3f3f3f;
    int k;
    int a[30];
    
    signed main() {
        start;
        cout << 2 << ' ' << 3 << '
    ';
        cin >> k;
        int maxx = 0;
        for (int i = 0; i < 30; ++i) {
            if (k & (1 << i))
                a[i] = 1, maxx = i;
            else
                a[i] = 0;
        }
        cout << k + (1 << (maxx + 1)) << ' ' << k << ' ' << 0 << '
    ';
        int ans = (1 << (maxx + 1));
        for (int i = maxx; i >= 0; --i) {
            if (!a[i])
                ans += (1 << i);
        }
        cout << ans << ' ' << k + (1 << (maxx + 1));
        cout << ' ';
        cout << k;
        return 0;
    }
    

    废话好多,构造还是思路重要,所以大部分篇幅都用来讲思路

  • 相关阅读:
    实训9.4.前端:url、href、src,link和@import
    实训9.2.作业1.写一个10次循环,每次得到一个随机数,放进一个集合中,如果这个数已经存在集合中则跳过,最后打印集合中的数字.
    实训9.3. SQL——STRUCTURED QUERY LANGUAGE(结构化查询语言 )
    实训9.2.类集,Collection接口
    实训9.2.IDEA ——java编程语言开发的集成环境(集成开发工具)
    实训9.2. JDK——java语言的软件开发工具包(JAVA的运行环境(JVM+Java系统类库)和JAVA工具) 【java开发的核心】
    从键盘输入数据
    error
    ubuntu 14.04, Command "/usr/bin/python -u -c "import setuptools, tokenize;__file__='
    用Python徒手写线性回归
  • 原文地址:https://www.cnblogs.com/F-Mu/p/12611208.html
Copyright © 2020-2023  润新知