• Codeforces 1221D


    题意

    对于n个栅栏,对于每个(i),有高度(a[i]),对于任意(2<=i<=n),有(a[i] ot=a[i-1]),则称该组栅栏为好栅栏,每个栅栏可花费(b[i])提升(1)个高度(可无限提升)。给一组栅栏,问最少花费多少可以将这组栅栏变为好栅栏。

    分析

    对于第(i)个栅栏,他要保证不与第(i-1)(i+1)个栅栏相同,最多提升(2),如果提升(2)与第(i-1)(i+1)相同,则可选择提升(0)(1),同理如果此时与另一侧栅栏相同,则可提升(0)(1)使该栅栏与两侧栅栏不同。题意给出其实提醒了(DP)(说(a[i] ot= a[i-1]))。我们设置(DP[i][j])表示对于第(i)个栅栏,提升(j)后,使得前(i)个栅栏为好栅栏,(0<=j<=2)
    ((1))对于(a[i]=a[i-1])的情况
    如果第(i)个栅栏提升(0),则第(i-1)个栅栏需提升(1)或者(2),那么有

    [dp[i][0] = min(dp[i - 1][1], dp[i - 1][2] ]

    如果第(i)个栅栏提升(1),则第(i-1)个栅栏需提升(0)或者(2),那么有

    [dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + b[i] ]

    如果第(i)个栅栏提升(2),则第(i-1)个栅栏需提升(0)或者(1),那么有

    [dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + b[i] * 2 ]

    ((2))对于(a[i]=a[i-1]+1)的情况
    如果第(i)个栅栏提升(0),则第(i-1)个栅栏需提升(0)或者(2),那么有

    [dp[i][0] = min(dp[i - 1][0], dp[i - 1][2]) ]

    如果第(i)个栅栏提升(1),则第(i-1)个栅栏需提升(0)或者(1),那么有

    [dp[i][1] = min(dp[i - 1][0], dp[i - 1][1]) + b[i] ]

    如果第(i)个栅栏提升(2),则第(i-1)个栅栏需提升(0)或者(1)或者(2),那么有

    [dp[i][2] = min(dp[i - 1][0], min(dp[i - 1][1],dp[i-1][2])) + b[i] * 2 ]

    ((3))对于(a[i]=a[i-1]+2)的情况
    如果第(i)个栅栏提升(0),则第(i-1)个栅栏需提升(0)或者(1),那么有

    [dp[i][0] = min(dp[i - 1][0], dp[i - 1][1]) ]

    如果第(i)个栅栏提升(1),则第(i-1)个栅栏需提升(0)或者(1)或者(2),那么有

    [dp[i][1] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i] ]

    如果第(i)个栅栏提升(2),则第(i-1)个栅栏需提升(0)或者(1)或者(2),那么有

    [dp[i][2] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i] * 2 ]

    ((4))对于(a[i]=a[i-1]-1)的情况
    如果第(i)个栅栏提升(0),则第(i-1)个栅栏需提升(0)或者(1)或者(2),那么有

    [dp[i][0] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) ]

    如果第(i)个栅栏提升(1),则第(i-1)个栅栏需提升(1)或者(2),那么有

    [dp[i][1] = min(dp[i - 1][1], dp[i - 1][2]) + b[i] ]

    如果第(i)个栅栏提升(2),则第(i-1)个栅栏需提升(0)或者(2),那么有

    [dp[i][2] = min(dp[i - 1][0], dp[i - 1][2]) + b[i] * 2 ]

    ((5))对于(a[i]=a[i-1]-2)的情况
    如果第(i)个栅栏提升(0),则第(i-1)个栅栏需提升(0)或者(1)或者(2),那么有

    [dp[i][0] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) ]

    如果第(i)个栅栏提升(1),则第(i-1)个栅栏需提升(0)或者(1)或者(2),那么有

    [dp[i][1] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i] ]

    如果第(i)个栅栏提升(2),则第(i-1)个栅栏需提升(1)或者(2),那么有

    [dp[i][2] = min(dp[i - 1][1], dp[i - 1][2]) + b[i] * 2 ]

    ((6)其他情况 第)i$个栅栏提升(0,1,2),第(i-1)个栅栏可提升(0)或者(1)或者(2),有

    [dp[i][0] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) ]

    [dp[i][1] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i] ]

    [dp[i][2] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i] * 2 ]

    最后输出(min(dp[n][0], min(dp[n][1], dp[n][2])))即可

    #pragma GCC optimize(3, "Ofast", "inline")
    
    #include <bits/stdc++.h>
    
    #define start ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    #define ll long long
    #define int ll
    #define ls st<<1
    #define rs st<<1|1
    #define pii pair<int,int>
    using namespace std;
    const int maxn = (ll) 3e5 + 5;
    const int mod = 1000000007;
    const int inf = 0x3f3f3f3f;
    int dp[maxn][3];
    int a[maxn], b[maxn];
    
    signed main() {
        start;
        int q;
        cin >> q;
        while (q--) {
            int n;
            cin >> n;
            for (int i = 1; i <= n; ++i) {
                cin >> a[i] >> b[i];
                dp[i][0] = dp[i][1] = (ll) (1e18) + 5;//千万不能用memset
            }
            /*初始化*/
            dp[1][0] = 0;
            dp[1][1] = b[1];
            dp[1][2] = b[1] * 2;
            for (int i = 2; i <= n; ++i) {
                if (a[i] == a[i - 1]) {
                    dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]);
                    dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + b[i];
                    dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + b[i] * 2;
                } else if (a[i] == a[i - 1] + 1) {
                    dp[i][0] = min(dp[i - 1][0], dp[i - 1][2]);
                    dp[i][1] = min(dp[i - 1][0], dp[i - 1][1]) + b[i];
                    dp[i][2] = min(dp[i - 1][0], min(dp[i - 1][1],dp[i-1][2])) + b[i] * 2;
                } else if (a[i] == a[i - 1] + 2) {
                    dp[i][0] = min(dp[i - 1][0], dp[i - 1][1]);
                    dp[i][1] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i];
                    dp[i][2] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i] * 2;
                } else if (a[i] == a[i - 1] - 1) {
                    dp[i][0] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2]));
                    dp[i][1] = min(dp[i - 1][1], dp[i - 1][2]) + b[i];
                    dp[i][2] = min(dp[i - 1][0], dp[i - 1][2]) + b[i] * 2;
                } else if (a[i] == a[i - 1] - 2) {
                    dp[i][0] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2]));
                    dp[i][1] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i];
                    dp[i][2] = min(dp[i - 1][1], dp[i - 1][2]) + b[i] * 2;
                } else {
                    dp[i][0] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2]));
                    dp[i][1] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i];
                    dp[i][2] = min(dp[i - 1][0], min(dp[i - 1][1], dp[i - 1][2])) + b[i] * 2;
                }
            }
            cout << min(dp[n][0], min(dp[n][1], dp[n][2])) << '
    ';
        }
        return 0;
    }
    

    (这题我竟然和一个吉尔吉斯斯坦的小姐姐代码撞了,被判重然后unrated,哭了)

  • 相关阅读:
    djano框架根据小牛深入研究
    python raise 是啥东西
    python调request报错
    python当前时间,时间偏移
    写好了,定时任务,怎么让定时任务,去在服务器上跑?
    python实现定时任务-目的解决自动化造数据
    django-celery
    Fruits【水果】
    The Extinction of Some Languages【一些语言的消失】
    Dawson City【道森市】
  • 原文地址:https://www.cnblogs.com/F-Mu/p/11561159.html
Copyright © 2020-2023  润新知