• 2022年中科大创新班函数问题解答


    (2022年中科大创新班)设
    $$
    f_n\left( x \right) =1-x+\frac{x^2}{2!}+\cdots +\frac{\left( -x \right) ^n}{n!},n\in \mathbb{N}^\ast,x\in \mathbb{R}.
    $$

    (1)证明:方程$f_{2n-1}(x)=0$有唯一实数解,记作$a_n$.

    (2)数列$\{a_n\}$是否为单调数列?请证明你的结论.


    解法一. (1)当$x\leqslant 0$时,显然$f_n(x)>0$,故只需考虑$x>0$的情况即可.



    $$
    g_{2n-1}\left( x \right) =e^{x}f_{2n-1}\left( x \right) =e^{x}\left( 1-x+\frac{x^2}{2!}+\cdots -\frac{x^{2n-1}}{\left( 2n-1 \right) !} \right),
    $$

    $$
    g'_{2n-1}\left( x \right) =-e^x\frac{x^{2n-1}}{\left( 2n-1 \right) !}.
    $$


    当$x>0$时,
    $$
    g'_{2n-1}\left( x \right) =-e^x\frac{x^{2n-1}}{\left( 2n-1 \right) !}<0.
    $$
    故$g_{2n-1}\left( x \right)$在$(0,+\infty)$上单调递减.

    又$g_{2n-1}\left( 0 \right)=1>0$,而
    $$
    g_{2n-1}\left( x \right) =e^x\sum_{k=1}^n{\left[ \frac{x^{2k-2}}{\left( 2k-2 \right) !}-\frac{x^{2k-1}}{\left( 2k-1 \right) !} \right]}=e^x\sum_{k=1}^n{\frac{x^{2k-2}}{\left( 2k-1 \right) !}\left( 2k-1-x \right)},
    $$

    $$
    g_{2n-1}\left( 2n-1 \right) =e^x\sum_{k=1}^n{\frac{\left( 2n-1 \right) ^{2k-2}}{\left( 2k-1 \right) !}\left( 2k-2n \right)}<0.
    $$
    由零点存在定理可知方程$g_{2n-1}(x)=0$在$(0,2n-1)$上有唯一正数解$a_n$.即$f_{2n-1}(x)=0$在$(0,2n-1)$上有唯一正数解$a_n$.

    (2)注意到
    $$
    g_{2n+1}\left( x \right) =g_{2n-1}\left( x \right) +e^x\left( \frac{x^{2n}}{\left( 2n \right) !}-\frac{x^{2n+1}}{\left( 2n+1 \right) !} \right) ,
    $$

    $$\begin{aligned}
    g_{2n+1}\left( a_n \right) &=g_{2n-1}\left( a_n \right) +e^x\left( \frac{a_{n}^{2n}}{\left( 2n \right) !}-\frac{a_{n}^{2n+1}}{\left( 2n+1 \right) !} \right)\\
    &=e^x\left( \frac{a_{n}^{2n}}{\left( 2n \right) !}-\frac{a_{n}^{2n+1}}{\left( 2n+1 \right) !} \right) =e^x\left( \frac{a_{n}^{2n}}{\left( 2n+1 \right) !}\left( 2n+1-a_n \right) \right)\\
    &>0=g_{2n+1}\left( a_{n+1} \right) ,\\
    \end{aligned}$$
    再由函数$g_{2n+1}\left( x\right)$单调递减可知$a_n< a_{n+1}$,故数列$\{a_n\}$单调递增.


    解法二. (1)当$x\leqslant 0$时,显然$f_n(x)>0$,故只需考虑$x>0$的情况即可.

    由于
    $$
    f_{2n-1}\left( x \right) =1-x+\frac{x^2}{2!}+\cdots -\frac{x^{2n-1}}{\left( 2n-1 \right) !},
    $$

    $$
    f'_{2n-1}\left( x \right) =-1+x-\frac{x^2}{2!}+\cdots -\frac{x^{2n-2}}{\left( 2n-2 \right) !}=-f_{2n-2}\left( x \right).
    $$
    同理可得$f'_{2n}(x)=-f'_{2n-1}$.

    下面用数学归纳法证明:函数$f_{2n-1}(x)$单调递减,有唯一正零点$a_n\in (0,2n-1)$,而$f_{2n-2}\left( x \right)>0$.

    (a)当$n=1$时,函数$f_1(x)=1-x$单调递减,有唯一正零点$x=a_1=1$,由$f'_2(x)=-f_1(x)$可知$f_2(x)$在$(-\infty,1]$上递减,在$(1,+\infty)$上递增,故$\displaystyle f_2(x)\geqslant f_2(1)=\frac{1}{2}>0$.

    (b)当$n=k$时,假设函数$f_{2k-1}(x)$单调递减,有唯一正零点$a_ k\in (0,2k-1)$,而$f_{2k-2}\left( x \right)>0$.

    由$f'_{2k}(x)=-f_{2k-1}\left( x \right)$可知$f_{2k}(x)$在$(-\infty,a_k)$上单调递减,在$[a_k,+\infty)$上单调递增,故
    $$
    f_{2k}(x)\geqslant f_{2k}\left( a_k \right) =f_{2k-1}\left( a_k \right) +\frac{a_{k}^{2k}}{\left( 2k \right) !}=\frac{a_{k}^{2k}}{\left( 2k \right) !}>0.
    $$
    再由$f'_{2k+1}(x)=-f_{2k}\left( x \right)$可知$f_{2k+1}(x)$在$\mathbb{R}$上单调递减.

    而$f_{2k+1}\left( 0 \right) =1>0$,再由
    $$
    f_{2k+1}\left( x \right) =\sum_{m=0}^k{\left[ \frac{x^{2m}}{\left( 2m \right) !}-\frac{x^{2m+1}}{\left( 2m+1 \right) !} \right]}=\sum_{m=0}^k{\frac{x^{2m}}{\left( 2m+1 \right) !}\left( 2m+1-x \right)}
    $$
    可知
    $$
    f_{2k+1}\left( 2k+1 \right) =\sum_{m=0}^k{\frac{\left( 2k+1 \right) ^{2m}}{\left( 2m+1 \right) !}\left( 2m-2k \right)}<0.
    $$
    由零点存在定理可知方程$f_{2k+1}(x)=0$在$(0,2k+1)$上有唯一正零点$a_{k+1}$.

    故$n=k+1$时结论也成立.

    综上所述,对任意正整数$n$,函数$f_{2n-1}(x)$单调递减,有唯一正零点$a_n\in (0,2n-1)$,而$f_{2n-2}\left( x \right)>0$.即方程$f_{2n-1}(x)=0$有唯一实数解.


    (2)注意到
    $$
    f_{2n+1}\left( x \right) =f_{2n-1}\left( x \right) +\frac{x^{2n}}{\left( 2n \right) !}-\frac{x^{2n+1}}{\left( 2n+1 \right) !},
    $$

    $$\begin{aligned}
    f_{2n+1}\left( a_n \right) &=f_{2n-1}\left( a_n \right) +\frac{a_{n}^{2n}}{\left( 2n \right) !}-\frac{a_{n}^{2n+1}}{\left( 2n+1 \right) !}
    \\
    &=\frac{a_{n}^{2n}}{\left( 2n \right) !}-\frac{a_{n}^{2n+1}}{\left( 2n+1 \right) !}=\frac{a_{n}^{2n}}{\left( 2n+1 \right) !}\left( 2n+1-a_n \right)
    \\
    &>0=f_{2n+1}\left( a_{n+1} \right),
    \end{aligned}$$
    再由函数$f_{2n+1}\left( x\right)$单调递减可知$a_n< a_{n+1}$,故数列$\{a_n\}$单调递增.

  • 相关阅读:
    SQL0668N 由于表 "db2inst1.test" 上的原因代码 "3",所以不允许操作(解因为LOAD引起的LOAD暂挂状态锁)
    重装系统后,如何恢复DB2数据库?
    db2 导入导出命令大全
    解决tomcat启动时日志出现 javax.naming.NamingException: Invalid byte 1 of 1byte UTF8 sequence.的问题
    【fcntl系统调用】
    C++读书笔记之函数模板
    unix shell笔记
    用setsockopt()来控制recv()与send()的超时 【转】
    Linux守护进程的编程实现 [转]
    GDB调试core文件样例(如何定位Segment fault) 【转】
  • 原文地址:https://www.cnblogs.com/Eufisky/p/16407738.html
Copyright © 2020-2023  润新知