• Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,log,tan)


    0.1Bearbeiten
    {displaystyle int _{0}^{1}log left( an {frac {pi x}{2}} ight)\,dx=0}{displaystyle int _{0}^{1}log left(	an {frac {pi x}{2}}
ight)\,dx=0}
    ohne Beweis
     
    0.2Bearbeiten
    {displaystyle int _{0}^{pi }log ^{2}left( an {frac {x}{2}} ight)dx={frac {pi ^{3}}{4}}}{displaystyle int _{0}^{pi }log ^{2}left(	an {frac {x}{2}}
ight)dx={frac {pi ^{3}}{4}}}
    Beweis

    Die Funktion {displaystyle f(x)=-{frac {1}{2}}log left( an {frac {x}{2}} ight)}{displaystyle f(x)=-{frac {1}{2}}log left(	an {frac {x}{2}}
ight)} besitzt die Fourierreihenentwicklung {displaystyle sum _{k=0}^{infty }{frac {cos(2k+1)x}{2k+1}}}{displaystyle sum _{k=0}^{infty }{frac {cos(2k+1)x}{2k+1}}}.

    Nach der Parsevalschen Gleichung {displaystyle {frac {1}{pi }}int _{-pi }^{pi }|f(x)|^{2}\,dx={frac {a_{0}^{2}}{2}}+sum _{k=1}^{infty }{Big (}a_{k}^{2}+b_{k}^{2}{Big )}}{displaystyle {frac {1}{pi }}int _{-pi }^{pi }|f(x)|^{2}\,dx={frac {a_{0}^{2}}{2}}+sum _{k=1}^{infty }{Big (}a_{k}^{2}+b_{k}^{2}{Big )}}

    gilt dann {displaystyle {frac {1}{4pi }}int _{-pi }^{pi }log ^{2}left( an {frac {x}{2}} ight)dx=sum _{k=0}^{infty }{frac {1}{(2k+1)^{2}}}={frac {pi ^{2}}{8}}}{displaystyle {frac {1}{4pi }}int _{-pi }^{pi }log ^{2}left(	an {frac {x}{2}}
ight)dx=sum _{k=0}^{infty }{frac {1}{(2k+1)^{2}}}={frac {pi ^{2}}{8}}}.

     
    0.3Bearbeiten
    {displaystyle int _{0}^{pi }log ^{2}left( an {frac {x}{4}} ight)dx={frac {pi ^{3}}{4}}}{displaystyle int _{0}^{pi }log ^{2}left(	an {frac {x}{4}}
ight)dx={frac {pi ^{3}}{4}}}
    Beweis

    Die Funktion {displaystyle f(x)=log ^{2}left( an {frac {x}{2}} ight)}{displaystyle f(x)=log ^{2}left(	an {frac {x}{2}}
ight)} besitzt die Symmetrie {displaystyle f(pi -x)=f(x)\,}{displaystyle f(pi -x)=f(x)\,}.

    {displaystyle int _{0}^{pi }fleft({frac {x}{2}} ight)dx=2int _{0}^{frac {pi }{2}}f(x)\,dx}{displaystyle int _{0}^{pi }fleft({frac {x}{2}}
ight)dx=2int _{0}^{frac {pi }{2}}f(x)\,dx} ist daher {displaystyle int _{0}^{pi }f(x)\,dx={frac {pi ^{3}}{4}}}{displaystyle int _{0}^{pi }f(x)\,dx={frac {pi ^{3}}{4}}}.

     
    0.4Bearbeiten
    {displaystyle int _{pi /4}^{pi /2}log log an x\,dx={frac {pi }{2}}\,log left({sqrt {2pi }}\,\,{frac {Gamma left({frac {3}{4}} ight)}{Gamma left({frac {1}{4}} ight)}} ight)}{displaystyle int _{pi /4}^{pi /2}log log 	an x\,dx={frac {pi }{2}}\,log left({sqrt {2pi }}\,\,{frac {Gamma left({frac {3}{4}}
ight)}{Gamma left({frac {1}{4}}
ight)}}
ight)}
    1. Beweis (Vardisches Integral)

    {displaystyle I:=int _{pi /4}^{pi /2}log log an x\,dx}{displaystyle I:=int _{pi /4}^{pi /2}log log 	an x\,dx} ist nach Substitution {displaystyle xmapsto arctan e^{x}}{displaystyle xmapsto arctan e^{x}} gleich {displaystyle {frac {1}{2}}int _{0}^{infty }{frac {log x}{cosh x}}\,dx}{displaystyle {frac {1}{2}}int _{0}^{infty }{frac {log x}{cosh x}}\,dx}.

    Und das ist {displaystyle {frac {pi }{2}}\,int _{0}^{infty }{frac {log pi x}{cosh pi x}}\,dx={frac {pi }{2}}log {sqrt {pi }}int _{-infty }^{infty }{frac {dx}{cosh pi x}}+{frac {pi }{8}}int _{-infty }^{infty }{frac {log x^{2}}{cosh pi x}}\,dx}{displaystyle {frac {pi }{2}}\,int _{0}^{infty }{frac {log pi x}{cosh pi x}}\,dx={frac {pi }{2}}log {sqrt {pi }}int _{-infty }^{infty }{frac {dx}{cosh pi x}}+{frac {pi }{8}}int _{-infty }^{infty }{frac {log x^{2}}{cosh pi x}}\,dx}.

    Dabei ist {displaystyle int _{-infty }^{infty }{frac {dx}{cosh pi x}}=1}{displaystyle int _{-infty }^{infty }{frac {dx}{cosh pi x}}=1} und nach der Formel {displaystyle int _{-infty }^{infty }{frac {log(alpha ^{2}+x^{2})}{cosh pi x}}\,dx=4\,log left({sqrt {2}};{frac {Gamma left({frac {3}{4}}+{frac {alpha }{2}} ight)}{Gamma left({frac {1}{4}}+{frac {alpha }{2}} ight)}} ight)}{displaystyle int _{-infty }^{infty }{frac {log(alpha ^{2}+x^{2})}{cosh pi x}}\,dx=4\,log left({sqrt {2}};{frac {Gamma left({frac {3}{4}}+{frac {alpha }{2}}
ight)}{Gamma left({frac {1}{4}}+{frac {alpha }{2}}
ight)}}
ight)} für {displaystyle alpha geq 0}{displaystyle alpha geq 0}

    ist {displaystyle {frac {pi }{8}}\,int _{-infty }^{infty }{frac {log x^{2}}{cosh pi x}}\,dx={frac {pi }{2}}\,log left({sqrt {2}}\,\,{frac {Gamma left({frac {3}{4}} ight)}{Gamma left({frac {1}{4}} ight)}} ight)}{displaystyle {frac {pi }{8}}\,int _{-infty }^{infty }{frac {log x^{2}}{cosh pi x}}\,dx={frac {pi }{2}}\,log left({sqrt {2}}\,\,{frac {Gamma left({frac {3}{4}}
ight)}{Gamma left({frac {1}{4}}
ight)}}
ight)}. Also ist {displaystyle I={frac {pi }{2}}\,log left({sqrt {2pi }};{frac {Gamma left({frac {3}{4}} ight)}{Gamma left({frac {1}{4}} ight)}} ight)}{displaystyle I={frac {pi }{2}}\,log left({sqrt {2pi }};{frac {Gamma left({frac {3}{4}}
ight)}{Gamma left({frac {1}{4}}
ight)}}
ight)}.

    2. Beweis

    In der Formel {displaystyle int _{0}^{1}{frac {log log left({frac {1}{x}} ight)}{1+2cos alpha pi cdot x+x^{2}}}\,dx={frac {pi }{2sin alpha pi }}left(alpha log 2pi +log {frac {Gamma left({frac {1}{2}}+{frac {alpha }{2}} ight)}{Gamma left({frac {1}{2}}-{frac {alpha }{2}} ight)}} ight)}{displaystyle int _{0}^{1}{frac {log log left({frac {1}{x}}
ight)}{1+2cos alpha pi cdot x+x^{2}}}\,dx={frac {pi }{2sin alpha pi }}left(alpha log 2pi +log {frac {Gamma left({frac {1}{2}}+{frac {alpha }{2}}
ight)}{Gamma left({frac {1}{2}}-{frac {alpha }{2}}
ight)}}
ight)}

    setze {displaystyle alpha ={frac {1}{2}}\,:quad int _{0}^{1}{frac {log log left({frac {1}{x}} ight)}{1+x^{2}}}\,dx={frac {pi }{2}}left(log {sqrt {2pi }}+log {frac {Gamma left({frac {3}{4}} ight)}{Gamma left({frac {1}{4}} ight)}} ight)}{displaystyle alpha ={frac {1}{2}}\,:quad int _{0}^{1}{frac {log log left({frac {1}{x}}
ight)}{1+x^{2}}}\,dx={frac {pi }{2}}left(log {sqrt {2pi }}+log {frac {Gamma left({frac {3}{4}}
ight)}{Gamma left({frac {1}{4}}
ight)}}
ight)}

    Durch die Substitution {displaystyle xmapsto cot x}{displaystyle xmapsto cot x} ergibt sich die besagte Gleichung.

  • 相关阅读:
    java 项目自我总结-01 开发环境的搭建
    sql server 导入c#dll
    java 开发自我总结- idea 如何打包spring boot
    如何快速创建多工作页 excel
    运维知识总结
    .net core
    ubuntu安装网易云音乐
    Java中(==)与equals的区别
    Linux压缩打包命令
    文件目录属性
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730818.html
Copyright © 2020-2023  润新知