• Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,log,sin)


    0.1Bearbeiten
    {displaystyle int _{0}^{frac {pi }{2}}log left(2sin {frac {x}{2}} ight)dx=-G}int_0^{frac{pi}{2}} logleft(2 sin frac{x}{2}
ight) dx=-G
    Beweis

    Verwende die Fourierreihe {displaystyle -log left(2sin {frac {x}{2}} ight)=sum _{n=1}^{infty }{frac {cos nx}{n}}}-logleft(2 sin frac{x}{2}
ight)=sum_{n=1}^infty frac{cos nx}{n}.

    {displaystyle -int _{0}^{frac {pi }{2}}log left(2sin {frac {x}{2}} ight)dx=sum _{n=1}^{infty }{frac {1}{n}}int _{0}^{frac {pi }{2}}cos nx\,dx=sum _{n=1}^{infty }{frac {sin {frac {npi }{2}}}{n^{2}}}=sum _{n=0}^{infty }{frac {(-1)^{n}}{(2n+1)^{2}}}=G}-int_0^{frac{pi}{2}} logleft(2 sin frac{x}{2}
ight) dx=sum_{n=1}^infty frac{1}{n} int_0^{frac{pi}{2}} cos nx \, dx=sum_{n=1}^infty frac{sin frac{npi}{2}}{n^2}=sum_{n=0}^infty frac{(-1)^n}{(2n+1)^2}=G

     
    0.2Bearbeiten
    {displaystyle int _{0}^{frac {pi }{3}}log ^{2}left(2sin {frac {x}{2}} ight)\,dx={frac {7pi ^{3}}{108}}}int_0^{frac{pi}{3}} log^2left(2sin frac{x}{2}
ight)\, dx=frac{7pi^3}{108}
    Beweis

    Es sei {displaystyle mathbb {H} =mathbb {C} setminus {zin mathbb {R} \,|\,zleq 0}}{displaystyle mathbb {H} =mathbb {C} setminus {zin mathbb {R} \,|\,zleq 0}} und {displaystyle ngeq 2\,}nge 2\, eine natürliche Zahl.

    Die Funktion {displaystyle f_{n}:mathbb {H} o mathbb {C} \,,\,zmapsto {frac {(-log z)^{n-1}}{1-z}}}{displaystyle f_{n}:mathbb {H} 	o mathbb {C} \,,\,zmapsto {frac {(-log z)^{n-1}}{1-z}}} ist auf ganz {displaystyle mathbb {H} \,}{displaystyle mathbb {H} \,} holomorph,

    wenn man sie an ihrer hebbaren Definitionslücke {displaystyle z=1\,}z=1\, stetig fortsetzt.


    {displaystyle F_{n}:\,\,]-pi ,pi [ o mathbb {C} \,,\, heta mapsto int _{1}^{e^{-i heta }}f_{n}(z)\,dz}{displaystyle F_{n}:\,\,]-pi ,pi [	o mathbb {C} \,,\,	heta mapsto int _{1}^{e^{-i	heta }}f_{n}(z)\,dz} ist nach der Substitution {displaystyle z o {frac {1}{z}}}z	ofrac{1}{z}

    gleich {displaystyle int _{1}^{e^{i heta }}{frac {(log z)^{n-1}}{1-{frac {1}{z}}}}\,{frac {-dz}{z^{2}}}=int _{1}^{e^{i heta }}{frac {(log z)^{n-1}}{z\,(1-z)}}\,dz}int_1^{e^{i	heta}} frac{(log z)^{n-1}}{1-frac{1}{z}}\, frac{-dz}{z^2}=int_1^{e^{i	heta}} frac{(log z)^{n-1}}{z\, (1-z)}\, dz.

    Und das ist nach der Partialbruchzerlegung {displaystyle {frac {1}{z\,(1-z)}}={frac {1}{z}}+{frac {1}{1-z}}}frac{1}{z\, (1-z)}=frac{1}{z}+frac{1}{1-z}

    gleich {displaystyle int _{1}^{e^{i heta }}{frac {(log z)^{n-1}}{z}}\,dz+int _{1}^{e^{i heta }}{frac {(log z)^{n-1}}{1-z}}\,dz=left[{frac {1}{n}}\,(log z)^{n} ight]_{1}^{e^{i heta }}+(-1)^{n-1}int _{1}^{e^{i heta }}f_{n}(z)\,dz}int_1^{e^{i	heta}} frac{(log z)^{n-1}}{z} \, dz+int_1^{e^{i	heta}} frac{(log z)^{n-1}}{1-z} \, dz=left[frac{1}{n}\, (log z)^n 
ight]_1^{e^{i	heta}}+(-1)^{n-1} int_1^{e^{i	heta}} f_n(z)\, dz.

    Also ist {displaystyle F_{n}( heta )={frac {(i heta )^{n}}{n}}+{overline {F_{n}( heta )}}qquad (1)}F_n(	heta)=frac{(i	heta)^n}{n}+overline{F_n(	heta)} qquad (1)


    {displaystyle G_{n}:\,\,]0,2pi [ o mathbb {C} \,,\, heta mapsto int _{0}^{1-e^{i heta }}f_{n}(z)\,dz}{displaystyle G_{n}:\,\,]0,2pi [	o mathbb {C} \,,\,	heta mapsto int _{0}^{1-e^{i	heta }}f_{n}(z)\,dz} ist nach der Substitution {displaystyle z o 1-z\,}z	o 1-z\, gleich

    {displaystyle -int _{1}^{e^{i heta }}{frac {left[-log(1-z) ight]^{n-1}}{z}}\,dz}-int_1^{e^{i	heta}} frac{left[-log(1-z)
ight]^{n-1}}{z}\, dz. Und das ist nach der Substitution {displaystyle z o e^{ix}\,}z	o e^{ix}\, gleich

    {displaystyle -iint _{0}^{ heta }left[-log(1-e^{ix}) ight]^{n-1}\,dx}-i int_0^	heta left[-log(1-e^{ix})
ight]^{n-1}\, dx, wobei {displaystyle -log(1-e^{ix})=-log left(2sin {frac {x}{2}} ight)+i\,{frac {pi -x}{2}}}-log(1-e^{ix})=-logleft(2sinfrac{x}{2}
ight)+i\,frac{pi-x}{2} ist.

    Also ist {displaystyle G_{n}( heta )=-iint _{0}^{ heta }left[-log left(2sin {frac {x}{2}} ight)+i\,{frac {pi -x}{2}} ight]^{n-1}\,dxqquad (2)}G_n(	heta)=-iint_0^	heta left[-logleft(2sinfrac{x}{2}
ight)+i\,frac{pi-x}{2}
ight]^{n-1}\, dx qquad (2)


    {displaystyle G_{n}( heta )=int _{0}^{1-e^{i heta }}f_{n}(z)\,dz}G_n(	heta)=int_0^{1-e^{i	heta}} f_n(z)\, dz lässt sich aufspalten in {displaystyle int _{0}^{1}f_{n}(z)\,dz+int _{1}^{1-e^{i heta }}f_{n}(z)\,dz}int_0^1 f_n(z)\, dz+int_1^{1-e^{i	heta}} f_n(z)\, dz,

    wobei {displaystyle int _{0}^{1}f_{n}(z)\,dz=Gamma (n)\,zeta (n)}int_0^1 f_n(z)\, dz=Gamma(n)\, zeta(n) ist. Setzt man {displaystyle heta ={frac {pi }{3}}\,}	heta=frac{pi}{3}\,, so ist {displaystyle 1-e^{i heta }=e^{-i heta }\,}1-e^{i	heta}=e^{-i	heta}\, .

    Daher gilt {displaystyle G_{n}left({frac {pi }{3}} ight)=Gamma (n)zeta (n)+F_{n}left({frac {pi }{3}} ight)qquad (3)}G_nleft(frac{pi}{3}
ight)=Gamma(n)zeta(n)+F_nleft(frac{pi}{3}
ight) qquad (3)



    Betrachte nun den Fall {displaystyle heta ={frac {pi }{3}}}	heta=frac{pi}{3} und {displaystyle n=3\,:}n=3\, :

    Aus {displaystyle (1)\,\,\,F_{3}left({frac {pi }{3}} ight)={frac {left(i{frac {pi }{3}} ight)^{3}}{3}}+{overline {F_{3}left({frac {pi }{3}} ight)}}}(1) \,\,\, F_3left(frac{pi}{3}
ight)=frac{left(ifrac{pi}{3}
ight)^3}{3}+overline{F_3left(frac{pi}{3}
ight)}

    folgt {displaystyle { ext{Im}}left[F_{3}left({frac {pi }{3}} ight) ight]={frac {1}{2i}}\,left(F_{3}left({frac {pi }{3}} ight)-{overline {F_{3}left({frac {pi }{3}} ight)}} ight)={frac {1}{2i}}\,{frac {i^{3}pi ^{3}}{3^{4}}}=-{frac {pi ^{3}}{162}}}	ext{Im}left[F_3left(frac{pi}{3}
ight)
ight]=frac{1}{2i}\, left(F_3left(frac{pi}{3}
ight)-overline{F_3left(frac{pi}{3}
ight)}
ight)=frac{1}{2i}\, frac{i^3 pi^3}{3^4}=-frac{pi^3}{162}.

    Aus {displaystyle (2)\,\,\,G_{3}left({frac {pi }{3}} ight)=-iint _{0}^{frac {pi }{3}}left[-log left(2sin {frac {x}{2}} ight)+i\,{frac {pi -x}{2}} ight]^{2}\,dx}(2) \,\,\, G_3left(frac{pi}{3}
ight)=-iint_0^{frac{pi}{3}} left[-logleft(2sinfrac{x}{2}
ight)+i\,frac{pi-x}{2}
ight]^2 \, dx

    {displaystyle =int _{0}^{frac {pi }{3}}(pi -x)\,log left(2sin {frac {x}{2}} ight)\,dx-iint _{0}^{frac {pi }{3}}left[log ^{2}left(2sin {frac {x}{2}} ight)-left({frac {pi -x}{2}} ight)^{2} ight]dx}=int_0^{frac{pi}{3}} (pi-x)\, logleft(2sinfrac{x}{2}
ight)\, dx-iint_0^{frac{pi}{3}} left[log^2left(2sinfrac{x}{2}
ight)-left(frac{pi-x}{2}
ight)^2
ight] dx

    folgt {displaystyle { ext{Im}}left[G_{3}left({frac {pi }{3}} ight) ight]=int _{0}^{frac {pi }{3}}left({frac {pi -x}{2}} ight)^{2}\,dx-int _{0}^{frac {pi }{3}}log ^{2}left(2sin {frac {x}{2}} ight)\,dx}	ext{Im}left[G_3left(frac{pi}{3}
ight)
ight]=int_0^{frac{pi}{3}} left(frac{pi-x}{2}
ight)^2 \, dx-int_0^{frac{pi}{3}} log^2left(2sinfrac{x}{2}
ight) \, dx.

    Und aus {displaystyle (3)\,\,\,G_{3}left({frac {pi }{3}} ight)=2zeta (3)+F_{3}left({frac {pi }{3}} ight)}(3) \,\,\, G_3left(frac{pi}{3}
ight)=2zeta(3)+F_3left(frac{pi}{3}
ight) folgt {displaystyle { ext{Im}}left[G_{3}left({frac {pi }{3}} ight) ight]={ ext{Im}}left[F_{3}left({frac {pi }{3}} ight) ight]}	ext{Im}left[G_3left(frac{pi}{3}
ight)
ight]=	ext{Im}left[F_3left(frac{pi}{3}
ight)
ight].

    Also ist {displaystyle int _{0}^{frac {pi }{3}}log ^{2}left(2sin {frac {x}{2}} ight)\,dx-int _{0}^{frac {pi }{3}}{frac {(pi -x)^{2}}{4}}\,dx={frac {pi ^{3}}{162}}}int_0^{frac{pi}{3}} log^2left(2sinfrac{x}{2}
ight) \, dx-int_0^{frac{pi}{3}} frac{(pi-x)^2}{4} \, dx=frac{pi^3}{162}.

    Und somit ist {displaystyle int _{0}^{frac {pi }{3}}log ^{2}left(2sin {frac {x}{2}} ight)\,dx={frac {7pi ^{3}}{108}}}int_0^{frac{pi}{3}} log^2left(2sinfrac{x}{2}
ight) \, dx=frac{7pi^3}{108}.

     
    0.3Bearbeiten
    {displaystyle int _{0}^{pi }log ^{2}left(2sin {frac {x}{2}} ight)\,dx={frac {pi ^{3}}{12}}}int_0^{pi} log^2left(2sin frac{x}{2}
ight)\, dx=frac{pi^3}{12}
    ohne Beweis
     
    0.4Bearbeiten
    {displaystyle int _{0}^{frac {pi }{3}}xlog ^{2}left(2sin {frac {x}{2}} ight)\,dx={frac {17pi ^{4}}{6480}}}int_0^{frac{pi}{3}} xlog^2left(2sin frac{x}{2}
ight)\, dx=frac{17pi^4}{6480}
    Beweis

    Betrachte nun den Fall {displaystyle heta ={frac {pi }{3}}}	heta=frac{pi}{3} und {displaystyle n=4\,:}n=4\, :

    Aus {displaystyle (1)\,\,\,F_{4}left({frac {pi }{3}} ight)={frac {left(i{frac {pi }{3}} ight)^{4}}{4}}-{overline {F_{4}left({frac {pi }{3}} ight)}}}(1) \,\,\, F_4left(frac{pi}{3}
ight)=frac{left(ifrac{pi}{3}
ight)^4}{4}-overline{F_4left(frac{pi}{3}
ight)}

    folgt {displaystyle { ext{Re}}left[F_{4}left({frac {pi }{3}} ight) ight]={frac {1}{2}}\,left(F_{4}left({frac {pi }{3}} ight)+{overline {F_{4}left({frac {pi }{3}} ight)}} ight)={frac {1}{2}}\,{frac {pi ^{4}}{4cdot 3^{4}}}={frac {pi ^{4}}{648}}}	ext{Re}left[F_4left(frac{pi}{3}
ight)
ight]=frac12 \, left(F_4left(frac{pi}{3}
ight)+overline{F_4left(frac{pi}{3}
ight)}
ight)=frac{1}{2}\, frac{pi^4}{4cdot 3^4}=frac{pi^4}{648}.

    Aus {displaystyle (2)\,\,\,G_{4}left({frac {pi }{3}} ight)=-iint _{0}^{frac {pi }{3}}left[-log left(2sin {frac {x}{2}} ight)+i\,{frac {pi -x}{2}} ight]^{3}\,dx}(2) \,\,\, G_4left(frac{pi}{3}
ight)=-iint_0^{frac{pi}{3}} left[-logleft(2sinfrac{x}{2}
ight)+i\,frac{pi-x}{2}
ight]^3 \, dx

    {displaystyle =int _{0}^{frac {pi }{3}}left[3log ^{2}left(2sin {frac {x}{2}} ight){frac {pi -x}{2}}-left({frac {pi -x}{2}} ight)^{3} ight]\,dx+iint _{0}^{frac {pi }{3}}left[log ^{3}left(2sin {frac {x}{2}} ight)-3log left(2sin {frac {x}{2}} ight)\,left({frac {pi -x}{2}} ight)^{2} ight]\,dx}=int_0^{frac{pi}{3}} left[3log^2left(2sinfrac{x}{2}
ight)frac{pi-x}{2}-left(frac{pi-x}{2}
ight)^3
ight]\, dx+i int_0^{frac{pi}{3}} left[log^3left(2sinfrac{x}{2}
ight)-3logleft(2sinfrac{x}{2}
ight) \, left(frac{pi-x}{2}
ight)^2 
ight]\, dx

    folgt {displaystyle { ext{Re}}left[G_{4}left({frac {pi }{3}} ight) ight]={frac {3pi }{2}}int _{0}^{frac {pi }{3}}log ^{2}left(2sin {frac {x}{2}} ight)\,dx-{frac {3}{2}}int _{0}^{frac {pi }{3}}xlog ^{2}left(2sin {frac {x}{2}} ight)\,dx-int _{0}^{frac {pi }{3}}{frac {(pi -x)^{3}}{8}}dx}	ext{Re}left[G_4left(frac{pi}{3}
ight)
ight]=frac{3pi}{2}int_0^{frac{pi}{3}} log^2left(2sinfrac{x}{2}
ight) \, dx-frac32 int_0^{frac{pi}{3}} xlog^2left(2sinfrac{x}{2}
ight) \, dx-int_0^{frac{pi}{3}} frac{(pi-x)^3}{8} dx.

    Aus dem Fall {displaystyle n=3\,}n=3\, ist bereits bekannt, dass {displaystyle int _{0}^{frac {pi }{3}}log ^{2}left(2sin {frac {x}{2}} ight)\,dx={frac {7pi ^{3}}{108}}}int_0^{frac{pi}{3}} log^2left(2sinfrac{x}{2}
ight) \, dx=frac{7pi^3}{108} ist.

    Also ist {displaystyle { ext{Re}}left[G_{4}left({frac {pi }{3}} ight) ight]=-{frac {3}{2}}int _{0}^{frac {pi }{3}}xlog ^{2}left(2sin {frac {x}{2}} ight)\,dx+{frac {187pi ^{4}}{2592}}}	ext{Re}left[G_4left(frac{pi}{3}
ight)
ight]=-frac32int_0^{frac{pi}{3}} xlog^2left(2sinfrac{x}{2}
ight) \, dx+frac{187pi^4}{2592}.

    Und aus {displaystyle (3)\,\,\,G_{4}left({frac {pi }{3}} ight)=Gamma (4)zeta (4)+F_{4}left({frac {pi }{3}} ight)}(3) \,\,\, G_4left(frac{pi}{3}
ight)=Gamma(4)zeta(4)+F_4left(frac{pi}{3}
ight) folgt {displaystyle { ext{Re}}left[G_{4}left({frac {pi }{3}} ight) ight]-6cdot {frac {pi ^{4}}{90}}={ ext{Re}}left[F_{4}left({frac {pi }{3}} ight) ight]}	ext{Re}left[G_4left(frac{pi}{3}
ight)
ight]-6cdotfrac{pi^4}{90}=	ext{Re}left[F_4left(frac{pi}{3}
ight)
ight].

    Also ist {displaystyle -{frac {3}{2}}int _{0}^{frac {pi }{3}}xlog ^{2}left(2sin {frac {x}{2}} ight)\,dx+{frac {187pi ^{4}}{2592}}-6cdot {frac {pi ^{4}}{90}}={frac {pi ^{4}}{648}}}-frac32int_0^{frac{pi}{3}} xlog^2left(2sinfrac{x}{2}
ight) \, dx+frac{187pi^4}{2592}-6cdotfrac{pi^4}{90}=frac{pi^4}{648}.

    Und somit ist {displaystyle int _{0}^{frac {pi }{3}}xlog ^{2}left(2sin {frac {x}{2}} ight)\,dx={frac {17pi ^{4}}{6480}}}int_0^{frac{pi}{3}} xlog^2left(2sinfrac{x}{2}
ight) \, dx=frac{17pi^4}{6480}.

  • 相关阅读:
    Java并发之同步原语
    Iterator与ListIterator的区别
    java集合之深入分析ArrayList
    深入分析HashMap
    ssm项目,web容器无法初始化项目
    疯狂java学习笔记
    Delphi 转载:图形的移动、交错、雨滴状、百页窗、积木堆叠等显现方式
    Delphi 转载:Delphi 如何GET/POST 调用HTTP请求
    Delphi 界面和组件背景透明相关方法
    Delphi 把Form界面设置有弧度的矩形
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730815.html
Copyright © 2020-2023  润新知