• Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,exp,cos)


    1.1Bearbeiten
    {displaystyle int _{-infty }^{infty }e^{-x^{2}}\,cos(2ax)\,dx={sqrt {pi }}cdot e^{-a^{2}}qquad ain mathbb {C} }{displaystyle int _{-infty }^{infty }e^{-x^{2}}\,cos(2ax)\,dx={sqrt {pi }}cdot e^{-a^{2}}qquad ain mathbb {C} }
    1. Beweis

    Verwende die Reihenentwicklung {displaystyle cos(2ax)=sum _{k=0}^{infty }{frac {(-1)^{k}}{(2k)!}}\,(2ax)^{2k}}{displaystyle cos(2ax)=sum _{k=0}^{infty }{frac {(-1)^{k}}{(2k)!}}\,(2ax)^{2k}}.

    {displaystyle I:=int _{-infty }^{infty }e^{-x^{2}}\,cos(2ax)\,dx=sum _{k=0}^{infty }{frac {(-1)^{k}}{(2k)!}}\,(2a)^{2k}\,int _{-infty }^{infty }x^{2k}\,e^{-x^{2}}\,dx}{displaystyle I:=int _{-infty }^{infty }e^{-x^{2}}\,cos(2ax)\,dx=sum _{k=0}^{infty }{frac {(-1)^{k}}{(2k)!}}\,(2a)^{2k}\,int _{-infty }^{infty }x^{2k}\,e^{-x^{2}}\,dx}

    Dabei ist {displaystyle int _{-infty }^{infty }x^{2k}\,e^{-x^{2}}\,dx=2int _{0}^{infty }x^{2k}\,e^{-x^{2}}\,dx=2int _{0}^{infty }y^{k}\,e^{-y}\,{frac {dy}{2{sqrt {y}}}}=Gamma left(k+{frac {1}{2}} ight)={frac {sqrt {pi }}{2^{2k-1}}}\,{frac {Gamma (2k)}{Gamma (k)}}={frac {sqrt {pi }}{2^{2k}}}\,{frac {(2k)!}{k!}}}{displaystyle int _{-infty }^{infty }x^{2k}\,e^{-x^{2}}\,dx=2int _{0}^{infty }x^{2k}\,e^{-x^{2}}\,dx=2int _{0}^{infty }y^{k}\,e^{-y}\,{frac {dy}{2{sqrt {y}}}}=Gamma left(k+{frac {1}{2}}
ight)={frac {sqrt {pi }}{2^{2k-1}}}\,{frac {Gamma (2k)}{Gamma (k)}}={frac {sqrt {pi }}{2^{2k}}}\,{frac {(2k)!}{k!}}}.

    {displaystyle I=sum _{k=0}^{infty }{frac {(-1)^{k}}{(2k)!}}\,(2a)^{2k}\,{frac {sqrt {pi }}{2^{2k}}}\,{frac {(2k)!}{k!}}={sqrt {pi }}cdot sum _{k=0}^{infty }{frac {(-1)^{k}}{k!}}\,a^{2k}={sqrt {pi }}cdot e^{-a^{2}}}{displaystyle I=sum _{k=0}^{infty }{frac {(-1)^{k}}{(2k)!}}\,(2a)^{2k}\,{frac {sqrt {pi }}{2^{2k}}}\,{frac {(2k)!}{k!}}={sqrt {pi }}cdot sum _{k=0}^{infty }{frac {(-1)^{k}}{k!}}\,a^{2k}={sqrt {pi }}cdot e^{-a^{2}}}

    2. Beweis

    Integriert man die holomorphe Funktion {displaystyle f(z)=e^{-z^{2}}}{displaystyle f(z)=e^{-z^{2}}} längs der geschlossenen Kurve in der Zeichnung, so ist {displaystyle oint f(z)\,dz=0}{displaystyle oint f(z)\,dz=0}.
    ExpCosGraph.png
    Die Integrale über den vertikalen Strecken verschwinden für {displaystyle R o infty \,}R	o infty \,. Also ist {displaystyle {sqrt {pi }}=int _{-infty }^{infty }f(x)\,dx=int _{-infty }^{infty }f(x+ia)\,dx}{displaystyle {sqrt {pi }}=int _{-infty }^{infty }f(x)\,dx=int _{-infty }^{infty }f(x+ia)\,dx}

    {displaystyle f(x+ia)=e^{-(x+ia)^{2}}=e^{-x^{2}-icdot 2ax+a^{2}}=e^{a^{2}}cdot e^{-x^{2}}\,{Big (}cos(2ax)-isin(2ax){Big )}}{displaystyle f(x+ia)=e^{-(x+ia)^{2}}=e^{-x^{2}-icdot 2ax+a^{2}}=e^{a^{2}}cdot e^{-x^{2}}\,{Big (}cos(2ax)-isin(2ax){Big )}}

    {displaystyle Rightarrow \,int _{-infty }^{infty }f(x+ia)\,dx=e^{a^{2}}cdot {Bigg [}int _{-infty }^{infty }e^{-x^{2}}cos(2ax)\,dx-iunderbrace {int _{-infty }^{infty }e^{-x^{2}}sin(2ax)\,dx} _{=0}{Bigg ]}}{displaystyle Rightarrow \,int _{-infty }^{infty }f(x+ia)\,dx=e^{a^{2}}cdot {Bigg [}int _{-infty }^{infty }e^{-x^{2}}cos(2ax)\,dx-iunderbrace {int _{-infty }^{infty }e^{-x^{2}}sin(2ax)\,dx} _{=0}{Bigg ]}}
    {displaystyle Rightarrow \,int _{-infty }^{infty }e^{-x^{2}}\,cos(2ax)\,dx={sqrt {pi }}cdot e^{-a^{2}}}{displaystyle Rightarrow \,int _{-infty }^{infty }e^{-x^{2}}\,cos(2ax)\,dx={sqrt {pi }}cdot e^{-a^{2}}}

     
    3.1Bearbeiten
    {displaystyle int _{0}^{infty }e^{-ax}\,cos(bx)\,x^{s-1}\,dx={frac {Gamma (s)}{{sqrt {a^{2}+b^{2}}}^{s}}}\,cos left(s\,arctan {frac {b}{a}} ight)qquad a>0\,,\,bin mathbb {R} \,,\,{ ext{Re}}(s)>0}{displaystyle int _{0}^{infty }e^{-ax}\,cos(bx)\,x^{s-1}\,dx={frac {Gamma (s)}{{sqrt {a^{2}+b^{2}}}^{s}}}\,cos left(s\,arctan {frac {b}{a}}
ight)qquad a>0\,,\,bin mathbb {R} \,,\,{	ext{Re}}(s)>0}
    ohne Beweis
  • 相关阅读:
    终极调试工具EventRecorder使用方法,各种Link通吃
    stm32如何才能正常运行的调试笔记
    自己常用的vscode的插件备忘录
    linux下(lubuntu18.04.4)安装tinycc编译器及运行调试C语言
    虚拟机下的lubuntu14.04磁盘扩展
    使用lubuntu14.04编译ESP8266_NONOS_SDK3.0.0
    c语言中不建议使用的库函数
    RS485, RS422 and RS232连线
    Sql server output 功能介绍
    句子成分:主谓宾等
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730810.html
Copyright © 2020-2023  润新知