• Formelsammlung Mathematik: Bestimmte Integrale: Form R(x,BesselJ)


    1.1Bearbeiten
    {displaystyle int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dx=e^{-alpha }qquad { ext{Re}}(alpha )geq 0}{displaystyle int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dx=e^{-alpha }qquad {	ext{Re}}(alpha )geq 0}
    Beweis

    {displaystyle y(alpha ):=int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dxqquad left(Rightarrow \,y(0)=int _{0}^{infty }J_{0}(x)\,dx=1 ight)}{displaystyle y(alpha ):=int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dxqquad left(Rightarrow \,y(0)=int _{0}^{infty }J_{0}(x)\,dx=1
ight)}

    {displaystyle y'(alpha )=int _{0}^{infty }{frac {-alpha x}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}\,J_{0}(x)\,dx=underbrace {left[{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x) ight]_{0}^{infty }} _{=-1}-int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dxqquad {Big (}Rightarrow \,y'(0)=-1{Big )}}{displaystyle y'(alpha )=int _{0}^{infty }{frac {-alpha x}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}\,J_{0}(x)\,dx=underbrace {left[{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)
ight]_{0}^{infty }} _{=-1}-int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dxqquad {Big (}Rightarrow \,y'(0)=-1{Big )}}

    {displaystyle y''(alpha )=int _{0}^{infty }left({frac {alpha ^{2}}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}-{frac {1}{sqrt {alpha ^{2}+x^{2}}}} ight)J_{0}'(x)\,dx=int _{0}^{infty }{frac {alpha ^{2}}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}\,J_{0}'(x)\,dx-int _{0}^{infty }{frac {1}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dx}{displaystyle y''(alpha )=int _{0}^{infty }left({frac {alpha ^{2}}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}-{frac {1}{sqrt {alpha ^{2}+x^{2}}}}
ight)J_{0}'(x)\,dx=int _{0}^{infty }{frac {alpha ^{2}}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}\,J_{0}'(x)\,dx-int _{0}^{infty }{frac {1}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dx}

    {displaystyle =underbrace {left[{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x) ight]_{0}^{infty }} _{=0}-int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}''(x)\,dx-int _{0}^{infty }{frac {1}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dx}{displaystyle =underbrace {left[{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)
ight]_{0}^{infty }} _{=0}-int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}''(x)\,dx-int _{0}^{infty }{frac {1}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dx}

    Nachdem {displaystyle J_{0}(x)}{displaystyle J_{0}(x)} die Differenzialgleichung {displaystyle x^{2}\,J_{0}''(x)+xJ_{0}'(x)+x^{2}\,J_{0}(x)=0}{displaystyle x^{2}\,J_{0}''(x)+xJ_{0}'(x)+x^{2}\,J_{0}(x)=0} löst, ist {displaystyle xJ_{0}''(x)+J_{0}'(x)=-x\,J_{0}(x)}{displaystyle xJ_{0}''(x)+J_{0}'(x)=-x\,J_{0}(x)}.

    Und daher ist {displaystyle y''(alpha )=int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dx=y(alpha )\,\,Rightarrow \,y(alpha )=C_{1}\,e^{alpha }+C_{2}\,e^{-alpha }}{displaystyle y''(alpha )=int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dx=y(alpha )\,\,Rightarrow \,y(alpha )=C_{1}\,e^{alpha }+C_{2}\,e^{-alpha }}.

    Wegen {displaystyle y(0)=1}{displaystyle y(0)=1} und {displaystyle y'(0)=-1}{displaystyle y'(0)=-1} ist {displaystyle C_{1}=0}{displaystyle C_{1}=0} und {displaystyle C_{2}=1}{displaystyle C_{2}=1}; also {displaystyle y(alpha )=e^{-alpha }}{displaystyle y(alpha )=e^{-alpha }}.

     
    1.2Bearbeiten
    {displaystyle int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{1}(x)\,dx=1-e^{-alpha }qquad { ext{Re}}(alpha )geq 0}{displaystyle int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{1}(x)\,dx=1-e^{-alpha }qquad {	ext{Re}}(alpha )geq 0}
    Beweis

    Betrachte folgende Formel:

    {displaystyle int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dx=e^{-alpha }}{displaystyle int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dx=e^{-alpha }}

    Differenziere nach {displaystyle alpha \,}alpha\,:

    {displaystyle int _{0}^{infty }{frac {-alpha x}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}\,J_{0}(x)\,dx=-e^{-alpha }}{displaystyle int _{0}^{infty }{frac {-alpha x}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}\,J_{0}(x)\,dx=-e^{-alpha }}

    Das Integral ist nach partieller Integration

    {displaystyle left[{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x) ight]_{0}^{infty }-int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dx}{displaystyle left[{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)
ight]_{0}^{infty }-int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dx}, wobei {displaystyle J_{0}'(x)=-J_{1}(x)}{displaystyle J_{0}'(x)=-J_{1}(x)} ist.

    Also ist {displaystyle -1+int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{1}(x)\,dx=-e^{-alpha }}{displaystyle -1+int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{1}(x)\,dx=-e^{-alpha }}

     
    2.1Bearbeiten
    {displaystyle int _{0}^{infty }J_{ u }(x)\,x^{s-1}\,dx={frac {2^{s-1}\,Gamma left({frac { u +s}{2}} ight)}{Gamma left(1+{frac { u -s}{2}} ight)}}qquad -{ ext{Re}}( u )<{ ext{Re}}(s)<{frac {3}{2}}}{displaystyle int _{0}^{infty }J_{
u }(x)\,x^{s-1}\,dx={frac {2^{s-1}\,Gamma left({frac {
u +s}{2}}
ight)}{Gamma left(1+{frac {
u -s}{2}}
ight)}}qquad -{	ext{Re}}(
u )<{	ext{Re}}(s)<{frac {3}{2}}}
    Beweis

    Verwende die Poissonsche Darstellung

    {displaystyle J_{ u }(x)={frac {2}{Gamma left({frac {1}{2}} ight)Gamma left( u +{frac {1}{2}} ight)}}left({frac {x}{2}} ight)^{ u }int _{0}^{frac {pi }{2}}cos(xcos t)\,sin ^{2 u }t\,dtqquad { ext{Re}}( u )>-{frac {1}{2}}}{displaystyle J_{
u }(x)={frac {2}{Gamma left({frac {1}{2}}
ight)Gamma left(
u +{frac {1}{2}}
ight)}}left({frac {x}{2}}
ight)^{
u }int _{0}^{frac {pi }{2}}cos(xcos t)\,sin ^{2
u }t\,dtqquad {	ext{Re}}(
u )>-{frac {1}{2}}}


    {displaystyle int _{0}^{infty }J_{ u }(x)\,x^{s-1}\,dx={frac {2}{2^{ u }\,Gamma left({frac {1}{2}} ight)Gamma left( u +{frac {1}{2}} ight)}}int _{0}^{frac {pi }{2}}int _{0}^{infty }x^{ u +s-1}\,cos(xcos t)\,dx\,sin ^{2 u }t\,dt}{displaystyle int _{0}^{infty }J_{
u }(x)\,x^{s-1}\,dx={frac {2}{2^{
u }\,Gamma left({frac {1}{2}}
ight)Gamma left(
u +{frac {1}{2}}
ight)}}int _{0}^{frac {pi }{2}}int _{0}^{infty }x^{
u +s-1}\,cos(xcos t)\,dx\,sin ^{2
u }t\,dt}

    {displaystyle ={frac {2}{2^{ u }\,Gamma left({frac {1}{2}} ight)Gamma left( u +{frac {1}{2}} ight)}}int _{0}^{frac {pi }{2}}{frac {Gamma ( u +s)}{(cos t)^{ u +s}}}\,cos {frac {( u +s)pi }{2}}\,sin ^{2 u }t\,dt}{displaystyle ={frac {2}{2^{
u }\,Gamma left({frac {1}{2}}
ight)Gamma left(
u +{frac {1}{2}}
ight)}}int _{0}^{frac {pi }{2}}{frac {Gamma (
u +s)}{(cos t)^{
u +s}}}\,cos {frac {(
u +s)pi }{2}}\,sin ^{2
u }t\,dt}

    {displaystyle ={frac {Gamma ( u +s)\,cos {frac {( u +s)pi }{2}}}{2^{ u }\,{sqrt {pi }}\,Gamma left( u +{frac {1}{2}} ight)}}cdot 2int _{0}^{frac {pi }{2}}(sin t)^{2left( u +{frac {1}{2}} ight)-1}\,(cos t)^{2left({frac {1}{2}}-{frac { u +s}{2}} ight)-1}\,dt}{displaystyle ={frac {Gamma (
u +s)\,cos {frac {(
u +s)pi }{2}}}{2^{
u }\,{sqrt {pi }}\,Gamma left(
u +{frac {1}{2}}
ight)}}cdot 2int _{0}^{frac {pi }{2}}(sin t)^{2left(
u +{frac {1}{2}}
ight)-1}\,(cos t)^{2left({frac {1}{2}}-{frac {
u +s}{2}}
ight)-1}\,dt}

    {displaystyle ={frac {Gamma ( u +s)\,{frac {pi }{Gamma left({frac {1}{2}}+{frac { u +s}{2}} ight)\,Gamma left({frac {1}{2}}-{frac { u +s}{2}} ight)}}}{2^{ u }\,{sqrt {pi }}\,Gamma left( u +{frac {1}{2}} ight)}}cdot {frac {Gamma left( u +{frac {1}{2}} ight)\,Gamma left({frac {1}{2}}-{frac { u +s}{2}} ight)}{Gamma left(1+{frac { u -s}{2}} ight)}}}{displaystyle ={frac {Gamma (
u +s)\,{frac {pi }{Gamma left({frac {1}{2}}+{frac {
u +s}{2}}
ight)\,Gamma left({frac {1}{2}}-{frac {
u +s}{2}}
ight)}}}{2^{
u }\,{sqrt {pi }}\,Gamma left(
u +{frac {1}{2}}
ight)}}cdot {frac {Gamma left(
u +{frac {1}{2}}
ight)\,Gamma left({frac {1}{2}}-{frac {
u +s}{2}}
ight)}{Gamma left(1+{frac {
u -s}{2}}
ight)}}}

    {displaystyle ={frac {sqrt {pi }}{2^{ u }}}\,{frac {Gamma ( u +s)}{Gamma left({frac {1}{2}}+{frac { u +s}{2}} ight)}}cdot {frac {1}{Gamma left(1+{frac { u -s}{2}} ight)}}={frac {2^{s-1}\,Gamma left({frac { u +s}{2}} ight)}{Gamma left(1+{frac { u -s}{2}} ight)}}}{displaystyle ={frac {sqrt {pi }}{2^{
u }}}\,{frac {Gamma (
u +s)}{Gamma left({frac {1}{2}}+{frac {
u +s}{2}}
ight)}}cdot {frac {1}{Gamma left(1+{frac {
u -s}{2}}
ight)}}={frac {2^{s-1}\,Gamma left({frac {
u +s}{2}}
ight)}{Gamma left(1+{frac {
u -s}{2}}
ight)}}}

     
    3.1Bearbeiten
    {displaystyle int _{0}^{infty }J_{mu }(x)\,J_{ u }(x)\,x^{s-1}\,dx=2^{s-1}\,{frac {Gamma (1-s)cdot Gamma left({frac {mu + u +s}{2}} ight)}{Gamma left(1+{frac {mu - u -s}{2}} ight)cdot Gamma left(1+{frac { u -mu -s}{2}} ight)cdot Gamma left(1+{frac {mu + u -s}{2}} ight)}}}{displaystyle int _{0}^{infty }J_{mu }(x)\,J_{
u }(x)\,x^{s-1}\,dx=2^{s-1}\,{frac {Gamma (1-s)cdot Gamma left({frac {mu +
u +s}{2}}
ight)}{Gamma left(1+{frac {mu -
u -s}{2}}
ight)cdot Gamma left(1+{frac {
u -mu -s}{2}}
ight)cdot Gamma left(1+{frac {mu +
u -s}{2}}
ight)}}}
    ohne Beweis
  • 相关阅读:
    Ubuntu 16.04 OneDrive自动同步
    在conda环境中pip使用清华源秒速安装skimage、opencv、tensorflow、pytorch1.2.0等p
    写论文的最佳实践
    训练误差、测试误差、泛化误差的区别
    输入法 ctrl+句号 切换 中英文符号
    理解Graham扫描算法 查找凸包
    PDF阅读器 SumatraPDF 设置:电子书字体字号的更换及行距设置
    友情链接
    CRC全套~~~ 转载
    mysql插入中文出错,提示1366
  • 原文地址:https://www.cnblogs.com/Eufisky/p/14730805.html
Copyright © 2020-2023  润新知