1.1Bearbeiten
- {displaystyle int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dx=e^{-alpha }qquad { ext{Re}}(alpha )geq 0}
{displaystyle y(alpha ):=int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dxqquad left(Rightarrow \,y(0)=int _{0}^{infty }J_{0}(x)\,dx=1
ight)}
{displaystyle y'(alpha )=int _{0}^{infty }{frac {-alpha x}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}\,J_{0}(x)\,dx=underbrace {left[{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)
ight]_{0}^{infty }} _{=-1}-int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dxqquad {Big (}Rightarrow \,y'(0)=-1{Big )}}
{displaystyle y''(alpha )=int _{0}^{infty }left({frac {alpha ^{2}}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}-{frac {1}{sqrt {alpha ^{2}+x^{2}}}}
ight)J_{0}'(x)\,dx=int _{0}^{infty }{frac {alpha ^{2}}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}\,J_{0}'(x)\,dx-int _{0}^{infty }{frac {1}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dx}
{displaystyle =underbrace {left[{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)
ight]_{0}^{infty }} _{=0}-int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}''(x)\,dx-int _{0}^{infty }{frac {1}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dx}
Nachdem {displaystyle J_{0}(x)} die Differenzialgleichung {displaystyle x^{2}\,J_{0}''(x)+xJ_{0}'(x)+x^{2}\,J_{0}(x)=0} löst, ist {displaystyle xJ_{0}''(x)+J_{0}'(x)=-x\,J_{0}(x)}.
Und daher ist {displaystyle y''(alpha )=int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dx=y(alpha )\,\,Rightarrow \,y(alpha )=C_{1}\,e^{alpha }+C_{2}\,e^{-alpha }}.
Wegen {displaystyle y(0)=1} und {displaystyle y'(0)=-1} ist {displaystyle C_{1}=0} und {displaystyle C_{2}=1}; also {displaystyle y(alpha )=e^{-alpha }}.
1.2Bearbeiten
- {displaystyle int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{1}(x)\,dx=1-e^{-alpha }qquad { ext{Re}}(alpha )geq 0}
Betrachte folgende Formel:
{displaystyle int _{0}^{infty }{frac {x}{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)\,dx=e^{-alpha }}
Differenziere nach {displaystyle alpha \,}:
{displaystyle int _{0}^{infty }{frac {-alpha x}{{sqrt {alpha ^{2}+x^{2}}}^{\,3}}}\,J_{0}(x)\,dx=-e^{-alpha }}
Das Integral ist nach partieller Integration
{displaystyle left[{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}(x)
ight]_{0}^{infty }-int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{0}'(x)\,dx}, wobei {displaystyle J_{0}'(x)=-J_{1}(x)} ist.
Also ist {displaystyle -1+int _{0}^{infty }{frac {alpha }{sqrt {alpha ^{2}+x^{2}}}}\,J_{1}(x)\,dx=-e^{-alpha }}
2.1Bearbeiten
- {displaystyle int _{0}^{infty }J_{ u }(x)\,x^{s-1}\,dx={frac {2^{s-1}\,Gamma left({frac { u +s}{2}} ight)}{Gamma left(1+{frac { u -s}{2}} ight)}}qquad -{ ext{Re}}( u )<{ ext{Re}}(s)<{frac {3}{2}}}
Verwende die Poissonsche Darstellung
{displaystyle J_{
u }(x)={frac {2}{Gamma left({frac {1}{2}}
ight)Gamma left(
u +{frac {1}{2}}
ight)}}left({frac {x}{2}}
ight)^{
u }int _{0}^{frac {pi }{2}}cos(xcos t)\,sin ^{2
u }t\,dtqquad { ext{Re}}(
u )>-{frac {1}{2}}}
{displaystyle int _{0}^{infty }J_{
u }(x)\,x^{s-1}\,dx={frac {2}{2^{
u }\,Gamma left({frac {1}{2}}
ight)Gamma left(
u +{frac {1}{2}}
ight)}}int _{0}^{frac {pi }{2}}int _{0}^{infty }x^{
u +s-1}\,cos(xcos t)\,dx\,sin ^{2
u }t\,dt}
{displaystyle ={frac {2}{2^{
u }\,Gamma left({frac {1}{2}}
ight)Gamma left(
u +{frac {1}{2}}
ight)}}int _{0}^{frac {pi }{2}}{frac {Gamma (
u +s)}{(cos t)^{
u +s}}}\,cos {frac {(
u +s)pi }{2}}\,sin ^{2
u }t\,dt}
{displaystyle ={frac {Gamma (
u +s)\,cos {frac {(
u +s)pi }{2}}}{2^{
u }\,{sqrt {pi }}\,Gamma left(
u +{frac {1}{2}}
ight)}}cdot 2int _{0}^{frac {pi }{2}}(sin t)^{2left(
u +{frac {1}{2}}
ight)-1}\,(cos t)^{2left({frac {1}{2}}-{frac {
u +s}{2}}
ight)-1}\,dt}
{displaystyle ={frac {Gamma (
u +s)\,{frac {pi }{Gamma left({frac {1}{2}}+{frac {
u +s}{2}}
ight)\,Gamma left({frac {1}{2}}-{frac {
u +s}{2}}
ight)}}}{2^{
u }\,{sqrt {pi }}\,Gamma left(
u +{frac {1}{2}}
ight)}}cdot {frac {Gamma left(
u +{frac {1}{2}}
ight)\,Gamma left({frac {1}{2}}-{frac {
u +s}{2}}
ight)}{Gamma left(1+{frac {
u -s}{2}}
ight)}}}
{displaystyle ={frac {sqrt {pi }}{2^{
u }}}\,{frac {Gamma (
u +s)}{Gamma left({frac {1}{2}}+{frac {
u +s}{2}}
ight)}}cdot {frac {1}{Gamma left(1+{frac {
u -s}{2}}
ight)}}={frac {2^{s-1}\,Gamma left({frac {
u +s}{2}}
ight)}{Gamma left(1+{frac {
u -s}{2}}
ight)}}}
3.1Bearbeiten
- {displaystyle int _{0}^{infty }J_{mu }(x)\,J_{ u }(x)\,x^{s-1}\,dx=2^{s-1}\,{frac {Gamma (1-s)cdot Gamma left({frac {mu + u +s}{2}} ight)}{Gamma left(1+{frac {mu - u -s}{2}} ight)cdot Gamma left(1+{frac { u -mu -s}{2}} ight)cdot Gamma left(1+{frac {mu + u -s}{2}} ight)}}}