• 拉马努金连分数证明


    拉马努金连分数参考:这里

    Here is a famous problem posed by Ramanujan

    > Show that $$left(1 + frac{1}{1cdot 3} + frac{1}{1cdot 3cdot 5} + cdots ight) + left(cfrac{1}{1+}cfrac{1}{1+}cfrac{2}{1+}cfrac{3}{1+}cfrac{4}{1+cdots} ight) = sqrt{frac{pi e}{2}}$$

    The first series seems vaguely familiar if we consider the function $$f(x) = x + frac{x^{3}}{1cdot 3} + frac{x^{5}}{1cdot 3cdot 5} + cdots$$ and note that $$f'(x) = 1 + xf(x)$$ so that $y = f(x)$ satisfies the differential equation $$frac{dy}{dx} - xy = 1, y(0) = 0$$ The integrating factor here comes to be $e^{-x^{2}/2}$ so that $$ye^{-x^{2}/2} = int_{0}^{x}e^{-t^{2}/2}\,dt$$ and hence $$f(x) = e^{x^{2}/2}int_{0}^{x}e^{-t^{2}/2}\,dt$$ Thus the sum of the first series is $$f(1) = sqrt{e}int_{0}^{1}e^{-t^{2}/2}\,dt$$ But I have no idea about the continued fraction and still more I am not able to figure out how it would simplify to $sqrt{pi e/2}$ at the end.

    Please provide any hints or suggestions.

    **Update**: We have $$egin{aligned}f(1) &= sqrt{e}int_{0}^{1}e^{-t^{2}/2}\,dt = sqrt{e}int_{0}^{infty}e^{-t^{2}/2}\,dt - sqrt{e}int_{1}^{infty}e^{-t^{2}/2}\,dt\
    &= sqrt{frac{pi e}{2}} - sqrt{e}int_{1}^{infty}e^{-t^{2}/2}\,dtend{aligned}$$ and hence we finally need to establish $$sqrt{e}int_{1}^{infty}e^{-t^{2}/2}\,dt = cfrac{1}{1+}cfrac{1}{1+}cfrac{2}{1+}cfrac{3}{1+}cfrac{4}{1+cdots}$$ On further searching in Ramanujan's Collected Papers I found the following formula $$int_{0}^{a}e^{-x^{2}}\,dx = frac{sqrt{pi}}{2} - cfrac{e^{-a^{2}}}{2a+}cfrac{1}{a+}cfrac{2}{2a+}cfrac{3}{a+}cfrac{4}{2a+cdots}$$ and it seems helpful here. But unfortunately proving this formula seems to be another big challenge for me.

    This is a sketch of the proof, the details can be found [here][1]. I will offer this sketch because that paper was not intended to prove this result in particular, and I think that a proof might have been written somewhere else.

    Consider Mills ratio defined by:
    $$varphi(x)=e^{x^2/2}int_x^infty e^{-t^2/2}dt.$$

    > **Proposition 1.** There is a *unique* sequence of pairs of polynomials $((P_n,Q_n))_n$ such that $$varphi^{(n)}(x)=P_n(x)varphi(x)-Q_n(x)$$
    Moreover, these polynomials can be defined inductively by
    $$P_{n+1}(x)=xP_n(x)+P'_n,quad Q_{n+1}=P_n(x)+Q'_n(x)$$
    with obvious initial conditions.


    The proof in straightforward by induction.

    > **Proposition 2.** The sequences $(P_n)_{n}$ and $(Q_n)_{n}$ satisfy the following properties.

    > 1. $(P_0,P_1)=(1,x)$, and for all $ngeq1$ we have $P_{n+1}=xP_n+nP_{n-1}$.
    > 2. $(Q_0,Q_1)=(0,1)$, and for all $ngeq1$ we have $Q_{n+1}=xQ_n+nQ_{n-1}$.
    > 3. For all $ngeq1$ we have $P^prime_{n}=nP_{n-1}$.

    Indeed this follows from Leibniz $n$th derivative formula applied to $varphi'(x)=xvarphi(x)-1$, and the uniqueness statement in Proposition 1.

    > **Proposition 3.** For all $ngeq0$, we have $Q_{n+1}P_n-P_{n+1}Q_n=(-1)^nn!$.

    This also an easy induction.

    > **Proposition 4.** For all $ngeq0$, $(-1)^nvarphi^{(n)}(x)>0$.

    This is a crucial step. Note that
    $$varphi(x)=int_0^infty e^{-tx}e^{-t^2/2}dt$$
    therefore
    $$varphi^{(n)}(x)=(-1)^nint_0^infty t^ne^{-tx}e^{-t^2/2}dt$$

    > **Corollary 5.** The sequences $(P_n)_{n }$ and $(Q_n)_{n }$ satisfy the following properties.

    > 1. For all $ngeq0$, and all $x>0$, we have
    $${Q_{2n}(x)over P_{2n}(x)}<varphi(x)<{Q_{2n+1}(x)over P_{2n+1}(x)}.$$
    > 2. For all $ngeq0$, and all $x>0$, we have
    $$left|varphi(x)-{Q_n(x)over P_n(x)} ight|<frac{n!}{P_n(x)P_{n+1}(x)}.$$
    > 3. For all $x>0$, we have
    $$ lim_{n oinfty}{Q_n(x)over P_n(x)}=varphi(x).$$

    This last result, and the recurrence relations from Proposition 2. proves that
    $(Q_n/P_n)$ are the convergents of the non regular continued fraction:
    $$
    frac{Q_{n+1}}{P_{n+1}}=cfrac{1}{x+cfrac{1}{x+cfrac{2}{x+cfrac{3}{x+cfrac{4}{x+cfrac{ddots}{n/x}}}}}}
    $$

    Finally the desired equality follows from the fact that $varphi(1)+f(1)=sqrt{frac{epi}{2}}$, where $f$ is the function considered by the OP.
    This concludes the sketch of the proof.$qquadsquare$
    [1]: http://arxiv.org/abs/math/0607694


    Here is a famous problem posed by Ramanujan

    > Show that $$left(1 + frac{1}{1cdot 3} + frac{1}{1cdot 3cdot 5} + cdots ight) + left(cfrac{1}{1+}cfrac{1}{1+}cfrac{2}{1+}cfrac{3}{1+}cfrac{4}{1+cdots} ight) = sqrt{frac{pi e}{2}}$$

    The first series seems vaguely familiar if we consider the function $$f(x) = x + frac{x^{3}}{1cdot 3} + frac{x^{5}}{1cdot 3cdot 5} + cdots$$ and note that $$f'(x) = 1 + xf(x)$$ so that $y = f(x)$ satisfies the differential equation $$frac{dy}{dx} - xy = 1, y(0) = 0$$ The integrating factor here comes to be $e^{-x^{2}/2}$ so that $$ye^{-x^{2}/2} = int_{0}^{x}e^{-t^{2}/2}\,dt$$ and hence $$f(x) = e^{x^{2}/2}int_{0}^{x}e^{-t^{2}/2}\,dt$$ Thus the sum of the first series is $$f(1) = sqrt{e}int_{0}^{1}e^{-t^{2}/2}\,dt$$ But I have no idea about the continued fraction and still more I am not able to figure out how it would simplify to $sqrt{pi e/2}$ at the end.

    Please provide any hints or suggestions.

    **Update**: We have $$egin{aligned}f(1) &= sqrt{e}int_{0}^{1}e^{-t^{2}/2}\,dt = sqrt{e}int_{0}^{infty}e^{-t^{2}/2}\,dt - sqrt{e}int_{1}^{infty}e^{-t^{2}/2}\,dt\
    &= sqrt{frac{pi e}{2}} - sqrt{e}int_{1}^{infty}e^{-t^{2}/2}\,dtend{aligned}$$ and hence we finally need to establish $$sqrt{e}int_{1}^{infty}e^{-t^{2}/2}\,dt = cfrac{1}{1+}cfrac{1}{1+}cfrac{2}{1+}cfrac{3}{1+}cfrac{4}{1+cdots}$$ On further searching in Ramanujan's Collected Papers I found the following formula $$int_{0}^{a}e^{-x^{2}}\,dx = frac{sqrt{pi}}{2} - cfrac{e^{-a^{2}}}{2a+}cfrac{1}{a+}cfrac{2}{2a+}cfrac{3}{a+}cfrac{4}{2a+cdots}$$ and it seems helpful here. But unfortunately proving this formula seems to be another big challenge for me.


    The formula given by Ramanujan relating $pi$ and $e$ is proven in [1] chapter 12 Entry 43 pg.166:
    $$
    sqrt{frac{pi e^x}{2x}}=frac{1}{x+}frac{1}{1+}frac{2}{x+}frac{3}{1+}frac{4}{x+}...+left{1+frac{x}{1cdot3}+frac{x^2}{1cdot3cdot5}+frac{x^3}{1cdot3cdot5cdot7}+... ight}
    $$
    The 'hard' term in Ramanujan's formula is the continued fraction. Fortunately the continued fraction can be evaluated in terms of $ extrm{Erfc}(x)$ function. More precicely holds for $Re(b)>0$ ([2] in Appendix pg.578):
    $$
    lambda(a,b):=frac{int^{infty}_{0}t^aexpleft(-bt-t^2/2 ight)dt}{int^{infty}_{0}t^{a-1}expleft(-bt-t^2/2 ight)dt}=frac{a}{b+}frac{a+1}{b+}frac{a+2}{b+}frac{a+3}{b+}dots
    $$
    Set
    $$
    K:=frac{1}{x+}frac{1}{1+}frac{2}{x+}frac{3}{1+}frac{4}{x+}...
    $$
    Then one can see easily
    $$
    K=frac{1}{x+}frac{sqrt{x}}{sqrt{x}+}frac{2}{sqrt{x}+}frac{3}{sqrt{x}+}ldots
    $$
    Setting $a=1$ and $b=sqrt{x}$ in $lambda(a,b)$, we get
    $$
    K=frac{1}{x+sqrt{x}S}
    $$
    where
    $$
    S=lambda(1,sqrt{x})=frac{1}{sqrt{x}+}frac{2}{sqrt{x}+}frac{3}{sqrt{x}+}ldots
    =frac{int^{infty}_{0}te^{-tsqrt{x}-t^2/2}}{int^{infty}_{0}e^{-tsqrt{x}-t^2/2}}
    =frac{e^{-x/2}sqrt{frac{2}{pi}}}{ extrm{Erfc}left(sqrt{frac{x}{2}} ight)}-sqrt{x}
    $$
    Hence
    $$
    K=sqrt{frac{pi e^x}{2x}} extrm{Erfc}left(sqrt{frac{x}{2}} ight)
    $$
    Also the value of the sum in Ramanujan's formula is
    $$
    sqrt{frac{e^xpi}{2}} extrm{Erf}left(sqrt{frac{x}{2}} ight)
    $$
    From all the above the result follows.

    [1]: B.C.Berndt, Ramanujan`s Notebooks Part II. Springer Verlag, New York, 1989.

    [2]: L.Lorentzen and H.Waadeland, Continued Fractions with Applications. Elsevier Science Publishers B.V., North Holland, 1992.


    About the question for second identity we have:

    Let $n$ be non negative integer, then we set
    $$
    G_n(x,y):=int^{infty}_{0}t^{x+n}expleft(-yt-t^2/2 ight)dt
    $$
    With integration by parts we have
    $$
    G_n(a,b)=int^{infty}_{0}frac{d}{dt}left(frac{t^{a+n+1}}{a+n+1} ight)expleft(-bt-t^2/2 ight)dt=
    $$
    $$
    =0-int^{infty}_{0}frac{t^{a+n+1}}{a+n+1}expleft(-bt-t^2/2 ight)(-b-t)dt=
    $$
    $$
    =bfrac{G_{n+1}(a,b)}{a+n+1}+frac{G_{n+2}(a,b)}{a+n+1}
    $$
    Hence setting $t_n=frac{G_{n+1}(a,b)}{G_{n}(a,b)}$, $n=0,1,2,ldots$ we have
    $$
    t_n=frac{n+a+1}{b+t_{n+1}}
    $$
    and consequently
    $$
    t_0=frac{G_1(a,b)}{G_0(a,b)}=lambda(a+1,b)=frac{a+1}{b+}frac{a+2}{b+}frac{a+3}{b+}ldots
    $$

  • 相关阅读:
    Paip.最佳实践-- Buildin variale 内建变量 ,魔术变量,预定义变量,系统常量,系统变量 1
    paip.提升性能----java 无锁结构(CAS, Atomic, Threadlocal, volatile, 函数式编码, 不变对象)
    paip. 定时 关机 休眠 的总结
    Paip.Php Java 异步编程。推模型与拉模型。响应式(Reactive)”编程FutureData总结... 1
    paip.java 注解的详细使用代码
    paip.不同目录结构哈的文件批量比较
    paip.cache 缓存架构以及性能提升总结
    paip.消除 Java 的冗长try/catch/finally
    paip 自定义输入法多多输入法词库的备份导出以及导入
    paip.java c++得到当前类,方法名称以及行号
  • 原文地址:https://www.cnblogs.com/Eufisky/p/12833904.html
Copyright © 2020-2023  润新知