模型视图变换(几何变换)矩阵:
1. 齐次坐标:两条平行线也可以相交。
欧式空间对2D/3D空间的描述恰到好处,但是对投影空间就力不能及了(事实上,欧式空间是投影空间的一个子集)。
通常在二维空间中,我们把一个点表示为(x, y),那么如果这个点位于无限远又如何表示呢?一般是 (∞,∞),
而这样一个数学符号对我们的意义就太小了,因为它很难进行计算和变换。
为了描述“在无限远处”相交这个情景,数学家们发明了另一种坐标系,即齐次坐标系。
解决方案:齐次坐标系
简单来说,齐次坐标系就是使用N+1个数来表示N维欧式空间的方式,比如欧式空间中有一点(X,Y),那么在齐次空间中将被表示为(x,y,w),其中W为投影变量,W的作用就是把齐次空间转换回欧式空间:
X = x/w
Y = y/w
举个例子来说,欧式空间中有一点(1, 2),在齐次空间中将被表示为(1,2,1). 如果这个点向无限远处运动变成了(∞,∞),齐次坐标就可以表示为(1,2,0),因为1/0和2/0正好也是无限大。也就是说,我们可以不使用"∞"就可以表示无限大了。
验证
回到我们最初的问题,假如在欧式空间中有两条平行线:
只要C不等于D,他们永远不会相交。
现在我们使用齐次坐标系来重写这两条线:
很容易发现,这两条线在(x, y, 0) 初相交,也就是无限远处。
齐次坐标在计算机视觉处理上非常有用,比如把3D空间投影到屏幕上(2D)。
原文:http://www.songho.ca/math/homogeneous/homogeneous.html
2. 向量与齐次坐标
一个n维向量用齐次坐标表示为一个n+1维向量。
(x1,x1,...,xn)->(wx1,wx2,...,wxn,w),齐次向量的表示不是唯一的,例如齐次坐标[8,4,2]与[4,2,1]都表示点(4,2).
3.齐次坐标的应用
利用齐次坐标可以用矩阵运算,把二维、三维或高维空间点集从一个坐标系转换到另一个坐标系,实现了方便的数学计算。