• Python 二叉树


    性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
    性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
    性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
    性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
    性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)

    (1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。

    (2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。

    class Node(object):
        """节点类"""
        def __init__(self, elem=-1, lchild=None, rchild=None):
            self.elem = elem
            self.lchild = lchild
            self.rchild = rchild
    
    class Tree(object):
        """树类"""
        def __init__(self, root=None):
            self.root = root
    
        def add(self, elem):
            """为树添加节点"""
            node = Node(elem)
            #如果树是空的,则对根节点赋值
            if self.root == None:
                self.root = node
            else:
                queue = []
                queue.append(self.root)
                #对已有的节点进行层次遍历
                while queue:
                    #弹出队列的第一个元素
                    cur = queue.pop(0)
                    if cur.lchild == None:
                        cur.lchild = node
                        return
                    elif cur.rchild == None:
                        cur.rchild = node
                        return
                    else:
                        #如果左右子树都不为空,加入队列继续判断
                        queue.append(cur.lchild)
                        queue.append(cur.rchild)

    二叉树的遍历

    树的两种重要的遍历模式是深度优先遍历和广度优先遍历,深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

    深度优先遍历

    深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)

    • 先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树

       根节点->左子树->右子树

    def preorder(self, root):
          """递归实现先序遍历"""
          if root == None:
              return
          print root.elem
          self.preorder(root.lchild)
          self.preorder(root.rchild)
    • 中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树

      左子树->根节点->右子树

    def inorder(self, root):
          """递归实现中序遍历"""
          if root == None:
              return
          self.inorder(root.lchild)
          print root.elem
          self.inorder(root.rchild)
    • 后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点

       左子树->右子树->根节点

    def postorder(self, root):
          """递归实现后续遍历"""
          if root == None:
              return
          self.postorder(root.lchild)
          self.postorder(root.rchild)
          print root.elem

    三种遍历的顺序: 

    结果:
    先序:a b c d e f g h
    中序:b d c e a f h g
    后序:d e c b h g f a

    广度优先遍历(层次遍历)

    从树的root开始,从上到下从从左到右遍历整个树的节点

    def breadth_travel(self, root):
            """利用队列实现树的层次遍历"""
            if root == None:
                return
            queue = []
            queue.append(root)
            while queue:
                node = queue.pop(0)
                print node.elem,
                if node.lchild != None:
                    queue.append(node.lchild)
                if node.rchild != None:
                    queue.append(node.rchild)

     

  • 相关阅读:
    ServletContext 类 EL表达式
    tomcat HttpServlet 的请求方式和域对象存储数据的两种方式
    最新的vue没有dev-server.js文件,如何进行后台数据模拟?
    小程序的全局变量 定义和使用
    vue 生命周期钩子函数
    slice方法可以将“类似数组的对象”变成真正的数组 (遇到时候再研究一次)
    JS中一个new到底做了哪些事情?
    关于JS中的call()方法和apply() 暂时只接触到call() 等接触到apply()再回头来看
    关于 prototype与__proto__ (用到的时候再看一次 加深理解)
    关于闭包最好最容易的理解 -- 很好很强大留作自用
  • 原文地址:https://www.cnblogs.com/Erick-L/p/7227136.html
Copyright © 2020-2023  润新知