• ZROI#1119


    ZROI#1119

    看起来非常怪异...因为之前知道 (Fibonacii) 数列有通项公式,所以就一直以为这题是 (F) 的递推转通项...

    万万没想到,这竟然是个矩阵加速递推...

    (⑧) 说了,伤心,直接上式子:

    [egin{aligned} F_{n} &=sum_{i=0}^{n} f_{i} f_{n-i} \ &=sum_{i=0}^{n}left(f_{i-1}+f_{i-2} ight) f_{n-i}+f_{1} f_{n-1}+f_{0} f_{n} \ &=sum_{i=0}^{n-1} f_{i} f_{n-i-1}-f_{0} f_{n-1}+sum_{i=0}^{n-2} f_{i} f_{n-i-2}+f_{1} f_{n-1}+f_{0} f_{n} \ &=F_{n-1}+F_{n-2}+f_{1} f_{n-1}-f_{0} f_{n-1}+f_{0} f_{n} \ &=F_{n-1}+F_{n-2}+f_{n} end{aligned} ]

    所以我们有了递推公式,我们发现这个递推公式是和 (F) 以及 (f) 的相邻两项相关的,所以我们的初始矩阵和目标矩阵应保留至少四维状态.

    而因为答案要求的是 (F) 的前缀和,所以要多加一维用以辅助递推,于是我们的转移矩阵应该是 (5 imes 5) 的.

    我们发现这个初始矩阵和目标矩阵应该是这个亚子:

    [left[egin{array}{lllll}{?} & {?} & {?} & {?} & {?} \ {?} & {?} & {?} & {?} & {?} \ {?} & {?} & {?} & {?} & {?} \ {?} & {?} & {?} & {?} & {?} \ {?} & {?} & {?} & {?} & {?}end{array} ight]left[egin{array}{c}{F_{i}} \ {F_{i-1}} \ {f_{i}} \ {f_{i-1}} \ {a n s_{i}}end{array} ight]=left[egin{array}{c}{F_{i+1}} \ {F_{i}} \ {f_{i+1}} \ {f_{i}} \ {a n s_{i+1}}end{array} ight] ]

    问号矩阵是我们要推导的转移矩阵.

    经过推导,可以得到转移矩阵是这样的:

    [left[egin{array}{lllll}{1} & {1} & {0} & {0} & {1} \ {1} & {0} & {0} & {0} & {1} \ {1} & {0} & {1} & {1} & {1} \ {1} & {0} & {1} & {0} & {1} \ {0} & {0} & {0} & {0} & {1}end{array} ight]left[egin{array}{c}{F_{i}} \ {F_{i-1}} \ {f_{i}} \ {f_{i-1}} \ {a n s_{i}}end{array} ight]=left[egin{array}{c}{F_{i+1}} \ {F_{i}} \ {f_{i+1}} \ {f_{i}} \ {a n s_{i+1}}end{array} ight] ]

    至于如何推导,我还会有一篇博文专门讲解如何推导一个矩阵,在此不再赘述.

    直接快乐地上一个矩阵快速幂即可.

    初始矩阵是 (1 imes 5)(:{2,1,1,1,3}.)

    需要注意的是,因为初始矩阵是从第一项开始的,每乘一次转移矩阵向后递推一次,所以我们需要的转移次数是 (n-1) 的.

    愉快(AC!).

    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <queue>
    #include <cmath>
    #include <ctime>
    #include <map>
    #include <set>
    #define MEM(x,y) memset ( x , y , sizeof ( x ) )
    #define rep(i,a,b) for (int i = (a) ; i <= (b) ; ++ i)
    #define per(i,a,b) for (int i = (a) ; i >= (b) ; -- i)
    #define pii pair < int , int >
    #define one first
    #define two second
    #define rint read<int>
    #define rll read<LL>
    #define LL long long
    #define pb push_back
    #define db double
    #define mid ( ( l + r ) >> 1 )
    
    using std::queue ;
    using std::set ;
    using std::pair ;
    using std::max ;
    using std::min ;
    using std::priority_queue ;
    using std::vector ;
    using std::swap ;
    using std::sort ;
    using std::unique ;
    using std::greater ;
    
    template < class T >
        inline T read () {
            T x = 0 , f = 1 ; char ch = getchar () ;
            while ( ch < '0' || ch > '9' ) {
                if ( ch == '-' ) f = - 1 ;
                ch = getchar () ;
            }
            while ( ch >= '0' && ch <= '9' ) {
                x = ( x << 3 ) + ( x << 1 ) + ( ch - 48 ) ;
                ch = getchar () ;
            }
            return f * x ;
        }
    
    const int mod = 998244353 ;
    
    struct Matrix {
        LL e[5][5] , line , row ;
    
        inline void clear () { line = row = 0 ; MEM ( e , 0 ) ; return ; }
    
        friend Matrix operator * (Matrix a , Matrix b) {
            Matrix c ; c.clear () ; c.line = a.line ; c.row = b.row ;
            rep ( k , 0 , a.row - 1 ) rep ( i , 0 , a.line - 1 ) rep ( j , 0 , b.row - 1 )
                c.e[i][j] = ( c.e[i][j] + a.e[i][k] * b.e[k][j] % mod ) % mod ;
            return c ;
        }
    } ;
    
    inline Matrix quick (Matrix a , LL p) {
        Matrix c ; c.clear () ; c.line = a.line ; c.row = a.row ;
        rep ( i , 0 , c.line - 1 ) c.e[i][i] = 1 ;
        while ( p ) {
            if ( p & 1 ) c = c * a ;
            a = a * a ; p >>= 1 ;
        }
        return c ;
    }
    
    LL n , k ; Matrix p ;
    
    int main(){
    	n = rll () ; p.clear () ;
    	p.e[0][0] = p.e[1][0] = p.e[2][0] = 1 ;
        p.e[3][0] = p.e[0][1] = p.e[2][2] = 1 ;
        p.e[3][2] = p.e[0][4] = p.e[1][4] = 1 ;
        p.e[2][4] = p.e[3][4] = p.e[4][4] = 1 ;
        p.e[2][3] = 1 ; p.line = 5 ; p.row = 5 ;
    	Matrix ans = quick ( p , n - 1ll ) ; ;
        Matrix pri ; pri.clear () ;
        pri.line = 1 ; pri.row = 5 ;
        pri.e[0][0] = 2 ; pri.e[0][1] = 1 ;
        pri.e[0][2] = 1 ; pri.e[0][3] = 1 ;
        pri.e[0][4] = 3 ; ans = pri * ans ;
    	printf ("%lld
    " , ans.e[0][4] ) ;
    	system ("pause") ; return 0 ;
    }
    
  • 相关阅读:
    基础最短路(模板 bellman_ford)
    UVA-12304 Race(递推)
    How do you add?(递推)
    Coconuts, Revisited(递推+枚举+模拟)
    UVA-10726 Coco Monkey(递推)
    UVA-10995 Educational Journey
    UVA-10339 Watching Watches
    【React】377- 实现 React 中的状态自动保存
    【JS】376- Axios 使用指南
    【Nodejs】375- 如何加快 Node.js 应用的启动速度
  • 原文地址:https://www.cnblogs.com/Equinox-Flower/p/11672211.html
Copyright © 2020-2023  润新知