• ClickHouse常用表引擎详解


     
    表引擎是 ClickHouse 的一大特色。可以说, 表引擎决定了如何存储表的数据。包括:
    ➢ 数据的存储方式和位置,写到哪里以及从哪里读取数据。
    ➢ 支持哪些查询以及如何支持(不同引擎有些功能不能用)。
    ➢ 并发数据访问。
    ➢ 索引的使用(如果存在)。
    ➢ 是否可以执行多线程请求。
    ➢ 数据复制参数。
    表引擎的使用方式就是必须显式在创建表时定义该表使用的引擎,以及引擎使用的相关参数。
    特别注意:引擎的名称大小写敏感
     

    一、TinyLog

    以列文件的形式保存在磁盘上,不支持索引,没有并发控制。一般保存少量数据的小表,生产环境上作用有限。可以用于平时练习测试用。
    如:
    create table t_tinylog ( id String, name String) engine=TinyLog;
     

    二、Memory

    内存引擎,数据以未压缩的原始形式直接保存在内存当中,服务器重启数据就会消失。读写操作不会相互阻塞,不支持索引。简单查询下有非常非常高的性能表现(超过 10G/s)。一般用到它的地方不多,除了用来测试,就是在需要非常高的性能,同时数据量又不太大(上限大概 1 亿行)的场景。
     

    三、*MergeTree

    ClickHouse 中最强大的表引擎当属 MergeTree(合并树)引擎及该系列(*MergeTree)中的其他引擎,支持索引和分区,地位可以相当于 innodb 之于 Mysql。而且基于 MergeTree,还衍生除了很多小弟,也是非常有特色的引擎。

    1.建表语句

    CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
    (
        name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1] [TTL expr1],
        name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2] [TTL expr2],
        ...
        INDEX index_name1 expr1 TYPE type1(...) GRANULARITY value1,
        INDEX index_name2 expr2 TYPE type2(...) GRANULARITY value2,
        ...
        PROJECTION projection_name_1 (SELECT <COLUMN LIST EXPR> [GROUP BY] [ORDER BY]),
        PROJECTION projection_name_2 (SELECT <COLUMN LIST EXPR> [GROUP BY] [ORDER BY])
    ) ENGINE = MergeTree()
    ORDER BY expr
    [PARTITION BY expr]
    [PRIMARY KEY expr]
    [SAMPLE BY expr]
    [TTL expr
        [DELETE|TO DISK 'xxx'|TO VOLUME 'xxx' [, ...] ]
        [WHERE conditions]
        [GROUP BY key_expr [SET v1 = aggr_func(v1) [, v2 = aggr_func(v2) ...]] ] ]
    [SETTINGS name=value, ...]
    create table t_order_mt(
    id UInt32,
    sku_id String,
    total_amount Decimal(16,2),
    create_time Datetime
    ) engine =MergeTree
    partition by toYYYYMMDD(create_time)
    primary key (id)
    order by (id,sku_id);
    主键并不唯一,会建索引
    order by 是必须的,主键、分区非必须
     

    2.插入数据

    insert into t_order_mt values
    (101,'sku_001',1000.00,'2020-06-01 12:00:00') ,
    (102,'sku_002',2000.00,'2020-06-01 11:00:00'),
    (102,'sku_004',2500.00,'2020-06-01 12:00:00'),
    (102,'sku_002',2000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',12000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',600.00,'2020-06-02 12:00:00');
     
    superset-BI :) select * from t_order_mt;
    SELECT *
    FROM t_order_mt
    Query id: 81f6391b-d34c-49b4-96c9-0a02ef7966b1
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    6 rows in set. Elapsed: 0.003 sec.  
    MergeTree 其实还有很多参数(绝大多数用默认值即可),但是三个参数是更加重要的,也涉及了关于 MergeTree 的很多概念。
     

    A.partition by分区(可选)

    1)作用

    学过 hive 的应该都不陌生,分区的目的主要是降低扫描的范围,优化查询速度
    2)如果不填
    只会使用一个分区。(all)

    3)分区目录

    MergeTree 是以列文件+索引文件+表定义文件组成的,但是如果设定了分区那么这些文
    件就会保存到不同的分区目录中。

    4)并行

    分区后,面对涉及跨分区的查询统计,ClickHouse 会以分区为单位并行处理。一分区一线程

    5)数据写入与分区合并

    任何一个批次的数据写入都会产生一个临时分区,不会纳入任何一个已有的分区。写入后的某个时刻(大概 10-15 分钟后),ClickHouse 会自动执行合并操作(等不及也可以手动通过 optimize 执行),把临时分区的数据,合并到已有分区中。
    optimize table xxxx final;
     
    查看数据存储
    /var/lib/clickhouse/data/default/t_order_mt
    总用量 16
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:15 20200601_1_1_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:15 20200602_2_2_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:14 detached
    -rw-r----- 1 clickhouse clickhouse    1 3月  31 22:14 format_version.txt

    分区文件解释 

    20200601_1_1_0
    PartitionId_MinBlockNum_MaxBlockNum_Level
    PartitionId:
        20200601,分区日期
        数据分区ID生成规则
        数据分区规则由分区ID决定,分区ID由PARTITION BY分区键决定。根据分区键字段类型,ID生成规则可分为:
            未定义分区键:
                没有定义PARTITION BY,默认生成一个目录名为all的数据分区,所有数据均存放在all目录下
            整型分区键:
                分区键为整型,那么直接用该整型值的字符串形式作为分区ID
            日期类分区键
                String、Float类型等,通过128位的Hash算法取其Hash值作为分区ID
    MinBlockNum:
        最小分区块的编号,自增类型,从1开始向上递增。每产生一个新的目录分区就向上递增一个数字
    MaxBlockNum:
        最大分区块的编号,新创建的分区MinBlockNum等于MaxBlockNum的编号
    Level:
        合并的层级,被合并的次数。合并次数越多,层级值越大。
     

    分区路径下内容

    [root@superset-BI 20200601_1_1_0]# ll
    总用量 36
    -rw-r----- 1 clickhouse clickhouse 259 3月  31 22:15 checksums.txt
    -rw-r----- 1 clickhouse clickhouse 118 3月  31 22:15 columns.txt
    -rw-r----- 1 clickhouse clickhouse   1 3月  31 22:15 count.txt
    -rw-r----- 1 clickhouse clickhouse 189 3月  31 22:15 data.bin
    -rw-r----- 1 clickhouse clickhouse 144 3月  31 22:15 data.mrk3
    -rw-r----- 1 clickhouse clickhouse  10 3月  31 22:15 default_compression_codec.txt
    -rw-r----- 1 clickhouse clickhouse   8 3月  31 22:15 minmax_create_time.idx
    -rw-r----- 1 clickhouse clickhouse   4 3月  31 22:15 partition.dat
    -rw-r----- 1 clickhouse clickhouse   8 3月  31 22:15 primary.idx 
    data.bin:数据文件(老版本会有多个数据文件,根据列划分,如:id.bin、sku_id.bin等)
    data.mrk3:偏移量(标记文件,可加速查询。老版本会有多个标记文件,如id.mrk3、sku_id.mrk3等,于数据文件对应),在idx索引文件和bin数据文件之间起到了桥梁作用,以mrk2(目前新版本是mrk3)结尾的文件,表示该表启用了自适应索引间隔
    default_compression_codec.txt:压缩格式
    count.txt:记录表的行数
    columns.txt:列的信息
    columns format version: 1
        4 columns:
        `id` UInt32
        `sku_id` String
        `total_amount` Decimal(16, 2)
        `create_time` DateTime
    checksums.txt:校验文件,用于校验各个文件的正确性。存放各个文件的size以及hash值
    primary.idx:主键的索引文件(稀疏索引),用于加快查询效率
    partition.dat:分区信息
    minmax_create_time.idx:分区键的最小最大值
     

    6)例如

    再次执行上面的插入操作
    insert into t_order_mt values
    (101,'sku_001',1000.00,'2020-06-01 12:00:00') ,
    (102,'sku_002',2000.00,'2020-06-01 11:00:00'),
    (102,'sku_004',2500.00,'2020-06-01 12:00:00'),
    (102,'sku_002',2000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',12000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',600.00,'2020-06-02 12:00:00’);
     
    查看数据并没有纳入任何分区,需要等合并
    superset-BI :) select * from t_order_mt;
    SELECT *
    FROM t_order_mt
    Query id: a541a95b-fbd2-470b-82f2-75b9cfecd553
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    12 rows in set. Elapsed: 0.003 sec. 
     
    查看分区文件
    [root@superset-BI t_order_mt]# ll
    总用量 24
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:15 20200601_1_1_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:09 20200601_3_3_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:15 20200602_2_2_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:09 20200602_4_4_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:14 detached
    -rw-r----- 1 clickhouse clickhouse    1 3月  31 22:14 format_version.txt
     
    手动合并
    optimize table t_order_mt final;
    superset-BI :) optimize table t_order_mt final;
    OPTIMIZE TABLE t_order_mt FINAL
    Query id: e75033ee-3ba1-45c4-afae-0b9d03e2c8fe
    Ok.
    0 rows in set. Elapsed: 0.004 sec.
     
    再次查询
    superset-BI :) select * from t_order_mt;
    SELECT *
    FROM t_order_mt
    Query id: d383d41c-dc14-4f35-81af-7818d49f6322
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    12 rows in set. Elapsed: 0.003 sec. 
     
    再次查看数据文件
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:15 20200601_1_1_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:13 20200601_1_3_1
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:09 20200601_3_3_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:15 20200602_2_2_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:13 20200602_2_4_1
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:09 20200602_4_4_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:14 detached
    -rw-r----- 1 clickhouse clickhouse    1 3月  31 22:14 format_version.txt
     
    20200601_1_3_1是由20200601_1_1_0和20200601_3_3_0合并得来的,20200601_1_1_0和20200601_3_3_0后期会被清理掉
     
    只合并某一分区
    再次插入数据
    insert into t_order_mt values
    (101,'sku_001',1000.00,'2020-06-01 12:00:00') ,
    (102,'sku_002',2000.00,'2020-06-01 11:00:00'),
    (102,'sku_004',2500.00,'2020-06-01 12:00:00'),
    (102,'sku_002',2000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',12000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',600.00,'2020-06-02 12:00:00');
     
    查看数据
    superset-BI :) select * from t_order_mt;
    SELECT *
    FROM t_order_mt
    Query id: 1e7435e7-0632-4d43-9636-2208f9d66f56
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    18 rows in set. Elapsed: 0.003 sec. 
     
    查看数据文件
    [root@superset-BI t_order_mt]# ll
    总用量 40
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:15 20200601_1_1_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:13 20200601_1_3_1
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:09 20200601_3_3_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:17 20200601_5_5_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:15 20200602_2_2_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:13 20200602_2_4_1
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:09 20200602_4_4_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:17 20200602_6_6_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:14 detached
    -rw-r----- 1 clickhouse clickhouse    1 3月  31 22:14 format_version.txt
     
    手动只合并指定分区【暂时不行】
    optimize table t_order_mt partition '20220601' final;
     
    再次手动合并全表
    superset-BI :) optimize table t_order_mt final;
    OPTIMIZE TABLE t_order_mt FINAL
    Query id: 364558d1-a75e-4868-9783-76ccb980a83d
    Ok.
    0 rows in set. Elapsed: 0.003 sec.
    superset-BI :) select * from t_order_mt;
    SELECT *
    FROM t_order_mt
    Query id: 6fd560b2-9480-4402-a05f-d654ac542df4
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 11:00:00 │
    │ 102 │ sku_002 │         20002020-06-01 13:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    18 rows in set. Elapsed: 0.003 sec. 
     
    查看数据文件
    [root@superset-BI t_order_mt]# ll
    总用量 32
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:13 20200601_1_3_1
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:24 20200601_1_5_2
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:17 20200601_5_5_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:13 20200602_2_4_1
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:24 20200602_2_6_2
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 23:17 20200602_6_6_0
    drwxr-x--- 2 clickhouse clickhouse 4096 3月  31 22:14 detached
    -rw-r----- 1 clickhouse clickhouse    1 3月  31 22:14 format_version.txt
     

    B.primary key主键(可选)

    ClickHouse 中的主键,和其他数据库不太一样,它只提供了数据的一级索引,但是却不是唯一约束。这就意味着是可以存在相同 primary key 的数据的。
    主键的设定主要依据是查询语句中的 where 条件。
    根据条件通过对主键进行某种形式的二分查找,能够定位到对应的 index granularity,避免了全表扫描。
    index granularity: 直接翻译的话就是索引粒度,指在稀疏索引中两个相邻索引对应数据的间隔。ClickHouse 中的 MergeTree 默认是 8192。官方不建议修改这个值,除非该列存在大量重复值,比如在一个分区中几万行才有一个不同数据。
     
    稀疏索引:
    稀疏索引的好处就是可以用很少的索引数据,定位更多的数据,代价就是只能定位到索引粒度的第一行,然后再进行进行一点扫描。
     

    C.order by(必选)

    order by 设定了分区内的数据按照哪些字段顺序进行有序保存。
    order by 是 MergeTree 中唯一一个必填项,甚至比 primary key 还重要,因为当用户不设置主键的情况,很多处理会依照 order by 的字段进行处理(比如后面会讲的去重和汇总)。
    要求:主键必须是 order by 字段的前缀字段。
    比如 order by 字段是 (id,sku_id) 那么主键必须是 id 或者(id,sku_id)
     

    D.二级索引(跳数索引)

    目前在 ClickHouse 的官网上二级索引的功能在 v20.1.2.4 之前是被标注为实验性的,在
    这个版本之后默认是开启的。

    1)老版本使用二级索引前需要增加设置

    是否允许使用实验性的二级索引(v20.1.2.4 开始,这个参数已被删除,默认开启)
    set allow_experimental_data_skipping_indices=1;

    2)创建测试表

    create table t_order_mt2(
    id UInt32,
    sku_id String,
    total_amount Decimal(16,2),
    create_time Datetime,
    INDEX a total_amount TYPE minmax GRANULARITY 5
    ) engine =MergeTree
    partition by toYYYYMMDD(create_time)
    primary key (id)
    order by (id, sku_id);
    TYPE:索引类型,minmax记录最小最大值 
    其中 GRANULARITY N 是设定二级索引对于一级索引粒度的粒度。(会对一级索引分块做合并)
     

    3)插入数据

    insert into t_order_mt2 values
    (101,'sku_001',1000.00,'2020-06-01 12:00:00') ,
    (102,'sku_002',2000.00,'2020-06-01 11:00:00'),
    (102,'sku_004',2500.00,'2020-06-01 12:00:00'),
    (102,'sku_002',2000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',12000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',600.00,'2020-06-02 12:00:00’);
     

    4)对比效果

    那么在使用下面语句进行测试,可以看出二级索引能够为非主键字段的查询发挥作用。
    [root@superset-BI ~]# clickhouse-client --password --send_logs_level=trace <<< 'select * from t_order_mt2 where total_amount > toDecimal32(900., 2)';
    Password for user (default):
    [superset-BI] 2022.04.02 16:22:02.796175 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Debug> executeQuery: (from [::1]:46454) select * from t_order_mt2 where total_amount > toDecimal32(900., 2)
    [superset-BI] 2022.04.02 16:22:02.796682 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Debug> InterpreterSelectQuery: MergeTreeWhereOptimizer: condition "total_amount > toDecimal32(900., 2)" moved to PREWHERE
    [superset-BI] 2022.04.02 16:22:02.796934 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Debug> InterpreterSelectQuery: MergeTreeWhereOptimizer: condition "total_amount > toDecimal32(900., 2)" moved to PREWHERE
    [superset-BI] 2022.04.02 16:22:02.797144 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Trace> ContextAccess (default): Access granted: SELECT(id, sku_id, total_amount, create_time) ON default.t_order_mt2
    [superset-BI] 2022.04.02 16:22:02.798493 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Trace> ContextAccess (default): Access granted: SELECT(id, sku_id, total_amount, create_time) ON default.t_order_mt2
    [superset-BI] 2022.04.02 16:22:02.798575 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Trace> InterpreterSelectQuery: FetchColumns -> Complete
    [superset-BI] 2022.04.02 16:22:02.798744 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Debug> default.t_order_mt2 (973cb1cc-d4aa-42ea-9760-4991662eb5ff) (SelectExecutor): Key condition: unknown
    [superset-BI] 2022.04.02 16:22:02.799804 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Debug> default.t_order_mt2 (973cb1cc-d4aa-42ea-9760-4991662eb5ff) (SelectExecutor): MinMax index condition: unknown
    [superset-BI] 2022.04.02 16:22:02.800294 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Debug> default.t_order_mt2 (973cb1cc-d4aa-42ea-9760-4991662eb5ff) (SelectExecutor): Index `a` has dropped 1/2 granules.
    [superset-BI] 2022.04.02 16:22:02.800326 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Debug> default.t_order_mt2 (973cb1cc-d4aa-42ea-9760-4991662eb5ff) (SelectExecutor): Selected 2/2 parts by partition key, 1 parts by primary key, 2/2 marks by primary key, 1 marks to read from 1 ranges
    [superset-BI] 2022.04.02 16:22:02.801156 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Trace> MergeTreeInOrderSelectProcessor: Reading 1 ranges in order from part 20200601_1_1_0, approx. 5 rows starting from 0
    [superset-BI] 2022.04.02 16:22:02.802563 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Information> executeQuery: Read 5 rows, 160.00 B in 0.006315084 sec., 791 rows/sec., 24.74 KiB/sec.
    [superset-BI] 2022.04.02 16:22:02.802645 [ 19734 ] {fde456a5-691f-46ac-ac57-ba327a054b4d} <Debug> MemoryTracker: Peak memory usage (for query): 48.31 KiB.
    101 sku_001 1000 2020-06-01 12:00:00
    102 sku_002 2000 2020-06-01 11:00:00
    102 sku_002 2000 2020-06-01 13:00:00
    102 sku_002 12000 2020-06-01 13:00:00
    102 sku_004 2500 2020-06-01 12:00:00
     
    添加索引之后,分区目录下会有索引文件
    [root@superset-BI 20200601_1_1_0]# ll
    总用量 44
    -rw-r----- 1 clickhouse clickhouse 334 4月   2 16:21 checksums.txt
    -rw-r----- 1 clickhouse clickhouse 118 4月   2 16:21 columns.txt
    -rw-r----- 1 clickhouse clickhouse   1 4月   2 16:21 count.txt
    -rw-r----- 1 clickhouse clickhouse 189 4月   2 16:21 data.bin
    -rw-r----- 1 clickhouse clickhouse 144 4月   2 16:21 data.mrk3
    -rw-r----- 1 clickhouse clickhouse  10 4月   2 16:21 default_compression_codec.txt
    -rw-r----- 1 clickhouse clickhouse   8 4月   2 16:21 minmax_create_time.idx
    -rw-r----- 1 clickhouse clickhouse   4 4月   2 16:21 partition.dat
    -rw-r----- 1 clickhouse clickhouse   8 4月   2 16:21 primary.idx
    -rw-r----- 1 clickhouse clickhouse  41 4月   2 16:21 skp_idx_a.idx2
    -rw-r----- 1 clickhouse clickhouse  24 4月   2 16:21 skp_idx_a.mrk3
     

    E.数据TTL(数据存活时间)

    TTL 即 Time To Live,MergeTree 提供了可以管理数据表或者列的生命周期的功能。
     

    1.列级别TTL

    格式
    CREATE TABLE example_table
    (
        d DateTime,
        a Int TTL d + INTERVAL 1 MONTH,
        b Int TTL d + INTERVAL 1 MONTH,
        c String
    )
    ENGINE = MergeTree
    PARTITION BY toYYYYMM(d)
    ORDER BY d;
     
    ALTER TABLE example_table
        MODIFY COLUMN
        c String TTL d + INTERVAL 1 DAY;
     
    (1)创建测试表
    create table t_order_mt3(
    id UInt32,
    sku_id String,
    total_amount Decimal(16,2) TTL create_time+interval 10 SECOND,
    create_time Datetime
    ) engine =MergeTree
    partition by toYYYYMMDD(create_time)
    primary key (id)
    order by (id, sku_id);
     
    依赖create_time,依赖的这个字段不能是主键,类型必须是日期
     
    (2)插入数据(注意:根据实际时间改变)
    insert into t_order_mt3 values
    (106,'sku_001',1000.00,'2022-04-02 17:57:00'),
    (107,'sku_002',2000.00,'2022-04-02 17:57:00'),
    (110,'sku_003',600.00,'2022-04-02 17:57:00');
     
    superset-BI :) select * from t_order_mt3;
    SELECT *
    FROM t_order_mt3
    Query id: d24341b3-30c2-48f1-ba88-907945a1f3d6
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 106 │ sku_001 │         10002022-04-02 17:57:00 │
    │ 107 │ sku_002 │         20002022-04-02 17:57:00 │
    │ 110 │ sku_003 │          6002022-04-02 17:57:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    3 rows in set. Elapsed: 0.002 sec. 
     
    (3)手动合并,查看效果 到期后,指定的字段数据归 0
    optimize table t_order_mt3 final;
     
    superset-BI :) select * from t_order_mt3;
    SELECT *
    FROM t_order_mt3
    Query id: 16e0c34e-2161-4083-80ba-4f912a2d1c2f
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 106 │ sku_001 │            02022-04-02 17:57:00 │
    │ 107 │ sku_002 │            02022-04-02 17:57:00 │
    │ 110 │ sku_003 │            02022-04-02 17:57:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    3 rows in set. Elapsed: 0.002 sec. 
     
     

    2.表级TTL

    格式
    CREATE TABLE example_table
    (
        d DateTime,
        a Int
    )
    ENGINE = MergeTree
    PARTITION BY toYYYYMM(d)
    ORDER BY d
    TTL d + INTERVAL 1 MONTH [DELETE],
        d + INTERVAL 1 WEEK TO VOLUME 'aaa',
        d + INTERVAL 2 WEEK TO DISK 'bbb’;
     
    ALTER TABLE example_table
            MODIFY TTL d + INTERVAL 1 DAY;
     
    下面的这条语句使数据会在 create_time 之后 10 秒丢失
    alter table t_order_mt3 MODIFY TTL create_time + INTERVAL 10 SECOND;
    涉及判断的字段必须是 Date 或者 Datetime 类型,推荐使用分区的日期字段。
    能够使用的时间周期:
    - SECOND
    - MINUTE
    - HOUR
    - DAY
    - WEEK
    - MONTH
    - QUARTER
    - YEAR
     
    验证
    superset-BI :) alter table t_order_mt3 MODIFY TTL create_time + INTERVAL 10 SECOND;
                  
    ALTER TABLE t_order_mt3
        MODIFY TTL create_time + toIntervalSecond(10)
    Query id: f5ea6762-a32f-4190-9c27-46240166cb73
    Ok.
    0 rows in set. Elapsed: 0.025 sec.
    superset-BI :) select * from t_order_mt3
                   ;
    SELECT *
    FROM t_order_mt3
    Query id: 2a3bca59-afca-4ed8-a9bb-84bffc3c68b4
    Ok.
    0 rows in set. Elapsed: 0.002 sec.
     
     

    四、ReplacingMergeTree(保证最终一致性)

    ReplacingMergeTree 是 MergeTree 的一个变种,它存储特性完全继承 MergeTree,只是多了一个去重的功能。 尽管 MergeTree 可以设置主键,但是 primary key 其实没有唯一约束的功能。如果你想处理掉重复的数据,可以借助这个 ReplacingMergeTree。

    1)去重时机

    数据的去重只会在合并的过程中出现。合并会在未知的时间在后台进行,所以你无法预先作出计划。有一些数据可能仍未被处理。

    2)去重范围

    如果表经过了分区,去重只会在分区内部进行去重,不能执行跨分区的去重。
    所以 ReplacingMergeTree 能力有限, ReplacingMergeTree 适用于在后台清除重复的数据以节省空间,但是它不保证没有重复的数据出现。

    3)案例演示

    (1)创建表
    create table t_order_rmt(
    id UInt32,
    sku_id String,
    total_amount Decimal(16,2) ,
    create_time Datetime
    ) engine =ReplacingMergeTree(create_time)
    partition by toYYYYMMDD(create_time)
    primary key (id)
    order by (id, sku_id);
    ReplacingMergeTree() 填入的参数为版本字段,重复数据保留版本字段值最大的。
    如果不填版本字段,默认按照插入顺序保留最后一条。
     
    (2)向表中插入数据
    insert into t_order_rmt values
    (101,'sku_001',1000.00,'2020-06-01 12:00:00') ,
    (102,'sku_002',2000.00,'2020-06-01 11:00:00'),
    (102,'sku_004',2500.00,'2020-06-01 12:00:00'),
    (102,'sku_002',2000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',12000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',600.00,'2020-06-02 12:00:00');
    (3)执行查询(已合并)
    superset-BI :)
                   select * from t_order_rmt;
    SELECT *
    FROM t_order_rmt
    Query id: 825f3e5a-5d64-42d3-8c7e-a53af0d2cecb
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 102 │ sku_002 │        120002020-06-01 13:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    4 rows in set. Elapsed: 0.003 sec. 
     
    4)通过测试得到结论
     实际上是使用 order by 字段作为唯一键
     去重不能跨分区
     只有同一批插入(新版本)或合并分区时才会进行去重
     认定重复的数据保留,版本字段值最大的
     如果版本字段相同则按插入顺序保留最后一笔 ​
     
     

    五、SummingMergeTree

    对于不查询明细,只关心以维度进行汇总聚合结果的场景。如果只使用普通的MergeTree的话,无论是存储空间的开销,还是查询时临时聚合的开销都比较大。
    ClickHouse 为了这种场景,提供了一种能够“预聚合”的引擎 SummingMergeTree

    1)案例

    (1)创建表
    create table t_order_smt(
    id UInt32,
    sku_id String,
    total_amount Decimal(16,2) ,
    create_time Datetime
    ) engine =SummingMergeTree(total_amount)
    partition by toYYYYMMDD(create_time)
    primary key (id)
    order by (id,sku_id );
    (2)插入数据
    insert into t_order_smt values
    (101,'sku_001',1000.00,'2020-06-01 12:00:00'),
    (102,'sku_002',2000.00,'2020-06-01 11:00:00'),
    (102,'sku_004',2500.00,'2020-06-01 12:00:00'),
    (102,'sku_002',2000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',12000.00,'2020-06-01 13:00:00'),
    (102,'sku_002',600.00,'2020-06-02 12:00:00');
     
    (3)查询数据
    superset-BI :) select * from t_order_smt;
    SELECT *
    FROM t_order_smt
    Query id: 4639f3bf-53c1-4c3c-bb8b-2ac13675cf32
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 101 │ sku_001 │         10002020-06-01 12:00:00 │
    │ 102 │ sku_002 │        160002020-06-01 11:00:00 │
    │ 102 │ sku_004 │         25002020-06-01 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    ┌──id─┬─sku_id──┬─total_amount─┬─────────create_time─┐
    │ 102 │ sku_002 │          6002020-06-02 12:00:00 │
    └─────┴─────────┴──────────────┴─────────────────────┘
    4 rows in set. Elapsed: 0.003 sec.
     

    2)通过结果可以得到以下结论

    以 SummingMergeTree()中指定的列作为汇总数据列
    可以填写多列必须数字列,如果不填,以所有非维度列且为数字列的字段为汇总数
    据列
    以 order by 的列为准,作为维度列
    其他的列按插入顺序保留第一行
    不在一个分区的数据不会被聚合
    只有在同一批次插入(新版本)或分片合并时才会进行聚合
     

    3)开发建议

    设计聚合表的话,唯一键值、流水号可以去掉,所有字段全部是维度、度量或者时间戳。
     

    4)问题

    能不能直接执行以下 SQL 得到汇总值
    select total_amount from XXX where province_name=’’ and create_date=’xxx’
    不行,可能会包含一些还没来得及聚合的临时明细
    如果要是获取汇总值,还是需要使用 sum 进行聚合,这样效率会有一定的提高,但本
    身 ClickHouse 是列式存储的,效率提升有限,不会特别明显。
    select sum(total_amount) from province_name='' and create_date='xxx'
  • 相关阅读:
    路障【SPFA】
    路障【SPFA】
    糟糕的一天【栈】
    糟糕的一天【栈】
    糟糕的一天【栈】
    糟糕的一天【栈】
    2018年暑假 纪中培训总结
    2018年暑假 纪中培训总结
    2018年暑假 纪中培训总结
    仪仗队【数论】
  • 原文地址:https://www.cnblogs.com/EnzoDin/p/16109867.html
Copyright © 2020-2023  润新知