• 树链剖分板子


    (n) 个点, (m) 个操作数, 根结点为 (R), 取模数为 (mod)

    输入一颗树。

    支持的操作:

    1. (x) 点的点权增加(或修改)(y)
    2. 将树从 (x)(y) 结点最短路径上所有节点的值都加上 (z)
    3. 询问某个节点 (x)(y) 节点的路径中所有点的点权和 (或maxn)。
    4. (x) 为根结点的子树中所有点的点权都增加 (y)
    5. 求以 (x) 为根节点的子树内所有节点值之和
    const ll N = 3e5 + 4;
    ll n, m, tot, R, mod;
    ll head[N], fa[N], son[N], siz[N], top[N], dep[N], seg[N], rev[N], a[N], lim[N];
    
    struct nodee
    {
        ll to, nxt;
    } t[2 * N];
    
    void add(ll x, ll y)
    {
        t[++tot].to = y;
        t[tot].nxt = head[x];
        head[x] = tot;
    }
    
    void dfs1(ll u, ll father)
    {
        siz[u] = 1, fa[u] = father, dep[u] = dep[father] + 1;
        for (ll i = head[u]; i; i = t[i].nxt)
        {
            ll y = t[i].to;
            if (siz[y] == 0)
            {
                dfs1(y, u);
                siz[u] += siz[y];
                if (siz[y] > siz[son[u]])
                {
                    son[u] = y;
                }
            }
        }
    }
    
    void dfs2(ll u)
    {
        seg[u] = ++seg[0];
        rev[seg[0]] = u;
        if (son[u])
        {
            top[son[u]] = top[u];
            dfs2(son[u]);
        }
        for (ll i = head[u]; i; i = t[i].nxt)
        {
            ll y = t[i].to;
            if (y == son[u] || fa[u] == y)
            {
                continue;
            }
            dfs2(y);
        }
        lim[u] = seg[0];
    }
    
    struct node
    {
        ll L, R, sum, tag, maxn;
        node *lc, *rc;
    };
    
    void pushup(node *now)
    {
        now->sum = (now->lc->sum + now->rc->sum) % mod;
        now->maxn = max(now->lc->maxn, now->rc->maxn);
    }
    
    inline void maketag(node *now, ll w)
    {
        now->tag = (now->tag + w) % mod;
        now->sum = (now->sum + (now->R - now->L + 1) * w) % mod;
        now->maxn = w;
    }
    
    inline void pushdown(node *now)
    {
        if (now->tag == 0)
            return;
        maketag(now->lc, now->tag);
        maketag(now->rc, now->tag);
        now->tag = 0;
    }
    
    void build(node *now, ll l, ll r)
    {
        now->L = l;
        now->R = r;
        now->tag = 0;
        if (l < r)
        {
            ll mid = (l + r) >> 1;
            now->lc = new node;
            now->rc = new node;
            build(now->lc, l, mid);
            build(now->rc, mid + 1, r);
            pushup(now);
        }
        else
        {
            now->maxn = a[rev[l]];
            now->sum = a[rev[l]];
            now->lc = now->rc = NULL;
        }
    }
    
    void change(node *now, ll l, ll r, ll w)
    {
        if (l <= now->L and now->R <= r)
        {
            maketag(now, w);
        }
        else if (!((now->L > r) || (now->R < l)))
        {
            pushdown(now);
            change(now->lc, l, r, w);
            change(now->rc, l, r, w);
            pushup(now);
        }
    }
    
    ll check1(node *now, ll l, ll r)
    {
        if (l <= now->L and now->R <= r)
            return now->sum;
        if ((now->L > r) || (now->R < l))
            return 0;
        pushdown(now);
        return (check1(now->lc, l, r) + check1(now->rc, l, r)) % mod;
    }
    
    ll check2(node *now, ll l, ll r)
    {
        if (l <= now->L and now->R <= r)
            return now->maxn;
        if ((now->L > r) || (now->R < l))
            return -INF;
        pushdown(now);
        return max(check2(now->lc, l, r), check2(now->rc, l, r));
    }
    
    int main()
    {
        n = read(), m = read();
        R = 1, mod = INF; // R为根结点序号
    
        for (ll i = 1; i <= n; i++)
            top[i] = i;
    
        for (ll i = 1; i <= n; i++)
            a[i] = read();
    
        for (ll i = 1; i <= n - 1; i++)
        {
            ll x = read(), y = read();
            add(x, y);
            add(y, x);
        }
    
        dfs1(R, 0);
        dfs2(R);
    
        node *root;
        root = new node;
        build(root, 1, n);
    
        for (int i = 1; i <= m; ++i)
        {
            ll opt = read(), x = read(), y, z;
    
            // 把 x 点的点权增加 y
            // 如果想要修改,更改上面的 maketag
            if (opt == 0) 
            {
                y = read(); 
                change(root, seg[x], seg[x], y);
            }
    
            // 表示将树从 x 到 y 结点最短路径上所有节点的值都加上 z。
            else if (opt == 1)
            {
                y = read(), z = read();
                while (top[x] != top[y])
                {
                    if (dep[top[x]] < dep[top[y]])
                        swap(x, y);
                    change(root, seg[top[x]], seg[x], z);
                    x = fa[top[x]];
                }
                if(seg[x] > seg[y]) swap(x, y);
                change(root, seg[x], seg[y], z);
            }
            
            // 询问某个节点 x 到 y 节点的路径中所有点的点权和 (或maxn)
            else if (opt == 2)
            {
                y = read();
                ll sum = 0;
                // ll maxn = -2147483647;
                while (top[x] != top[y])
                {
                    if (dep[top[x]] < dep[top[y]])
                        swap(x, y);
                    sum = (sum + check1(root, seg[top[x]], seg[x])) % mod;
                    // maxn = max(maxn, check2(root, seg[top[x]], seg[x]));
                    x = fa[top[x]];
                }
                if (seg[x] > seg[y])
                    swap(x, y);
                sum = (sum + check1(root, seg[x], seg[y])) % mod;
                // maxn = max(maxn, check2(root, seg[x], seg[y]));
                printf("%lld
    ", sum);
            }
    
            // 把 x 为根结点的子树中所有点的点权都增加 y
            else if (opt == 3) 
            {
                y = read();
                change(root, seg[x], lim[x], y);
            }
    
            // 求以 x 为根节点的子树内所有节点值之和
            else if (opt == 4)
            {
                ll ans = check1(root, seg[x], lim[x]) % mod;
                printf("%lld
    ", ans);
            }
        }
        return 0;
    }
    
  • 相关阅读:
    动态规划
    关键路径
    拓扑排序
    最小生成树
    Floyd 多源最短路径
    SPFA算法
    Bellman_Ford算法(负环的单源路径)
    Dijkstra算法
    fill和memset的区别
    Codeforces Round #655 (Div. 2) 题解
  • 原文地址:https://www.cnblogs.com/EdisonBa/p/14982207.html
Copyright © 2020-2023  润新知